mirror of https://github.com/postgres/postgres
Tag:
Branch:
Tree:
27b77ecf9f
REL2_0B
REL6_4
REL6_5_PATCHES
REL7_0_PATCHES
REL7_1_STABLE
REL7_2_STABLE
REL7_3_STABLE
REL7_4_STABLE
REL8_0_STABLE
REL8_1_STABLE
REL8_2_STABLE
REL8_3_STABLE
REL8_4_STABLE
REL8_5_ALPHA1_BRANCH
REL8_5_ALPHA2_BRANCH
REL8_5_ALPHA3_BRANCH
REL9_0_ALPHA4_BRANCH
REL9_0_ALPHA5_BRANCH
REL9_0_STABLE
REL9_1_STABLE
REL9_2_STABLE
REL9_3_STABLE
REL9_4_STABLE
REL9_5_STABLE
REL9_6_STABLE
REL_10_STABLE
REL_11_STABLE
REL_12_STABLE
REL_13_STABLE
REL_14_STABLE
REL_15_STABLE
REL_16_STABLE
REL_17_STABLE
REL_18_STABLE
Release_1_0_3
WIN32_DEV
ecpg_big_bison
master
PG95-1_01
PG95-1_08
PG95-1_09
REL2_0
REL6_1
REL6_1_1
REL6_2
REL6_2_1
REL6_3
REL6_3_2
REL6_4_2
REL6_5
REL6_5_1
REL6_5_2
REL6_5_3
REL7_0
REL7_0_2
REL7_0_3
REL7_1
REL7_1_1
REL7_1_2
REL7_1_3
REL7_1_BETA
REL7_1_BETA2
REL7_1_BETA3
REL7_2
REL7_2_1
REL7_2_2
REL7_2_3
REL7_2_4
REL7_2_5
REL7_2_6
REL7_2_7
REL7_2_8
REL7_2_BETA1
REL7_2_BETA2
REL7_2_BETA3
REL7_2_BETA4
REL7_2_BETA5
REL7_2_RC1
REL7_2_RC2
REL7_3
REL7_3_1
REL7_3_10
REL7_3_11
REL7_3_12
REL7_3_13
REL7_3_14
REL7_3_15
REL7_3_16
REL7_3_17
REL7_3_18
REL7_3_19
REL7_3_2
REL7_3_20
REL7_3_21
REL7_3_3
REL7_3_4
REL7_3_5
REL7_3_6
REL7_3_7
REL7_3_8
REL7_3_9
REL7_4
REL7_4_1
REL7_4_10
REL7_4_11
REL7_4_12
REL7_4_13
REL7_4_14
REL7_4_15
REL7_4_16
REL7_4_17
REL7_4_18
REL7_4_19
REL7_4_2
REL7_4_20
REL7_4_21
REL7_4_22
REL7_4_23
REL7_4_24
REL7_4_25
REL7_4_26
REL7_4_27
REL7_4_28
REL7_4_29
REL7_4_3
REL7_4_30
REL7_4_4
REL7_4_5
REL7_4_6
REL7_4_7
REL7_4_8
REL7_4_9
REL7_4_BETA1
REL7_4_BETA2
REL7_4_BETA3
REL7_4_BETA4
REL7_4_BETA5
REL7_4_RC1
REL7_4_RC2
REL8_0_0
REL8_0_0BETA1
REL8_0_0BETA2
REL8_0_0BETA3
REL8_0_0BETA4
REL8_0_0BETA5
REL8_0_0RC1
REL8_0_0RC2
REL8_0_0RC3
REL8_0_0RC4
REL8_0_0RC5
REL8_0_1
REL8_0_10
REL8_0_11
REL8_0_12
REL8_0_13
REL8_0_14
REL8_0_15
REL8_0_16
REL8_0_17
REL8_0_18
REL8_0_19
REL8_0_2
REL8_0_20
REL8_0_21
REL8_0_22
REL8_0_23
REL8_0_24
REL8_0_25
REL8_0_26
REL8_0_3
REL8_0_4
REL8_0_5
REL8_0_6
REL8_0_7
REL8_0_8
REL8_0_9
REL8_1_0
REL8_1_0BETA1
REL8_1_0BETA2
REL8_1_0BETA3
REL8_1_0BETA4
REL8_1_0RC1
REL8_1_1
REL8_1_10
REL8_1_11
REL8_1_12
REL8_1_13
REL8_1_14
REL8_1_15
REL8_1_16
REL8_1_17
REL8_1_18
REL8_1_19
REL8_1_2
REL8_1_20
REL8_1_21
REL8_1_22
REL8_1_23
REL8_1_3
REL8_1_4
REL8_1_5
REL8_1_6
REL8_1_7
REL8_1_8
REL8_1_9
REL8_2_0
REL8_2_1
REL8_2_10
REL8_2_11
REL8_2_12
REL8_2_13
REL8_2_14
REL8_2_15
REL8_2_16
REL8_2_17
REL8_2_18
REL8_2_19
REL8_2_2
REL8_2_20
REL8_2_21
REL8_2_22
REL8_2_23
REL8_2_3
REL8_2_4
REL8_2_5
REL8_2_6
REL8_2_7
REL8_2_8
REL8_2_9
REL8_2_BETA1
REL8_2_BETA2
REL8_2_BETA3
REL8_2_RC1
REL8_3_0
REL8_3_1
REL8_3_10
REL8_3_11
REL8_3_12
REL8_3_13
REL8_3_14
REL8_3_15
REL8_3_16
REL8_3_17
REL8_3_18
REL8_3_19
REL8_3_2
REL8_3_20
REL8_3_21
REL8_3_22
REL8_3_23
REL8_3_3
REL8_3_4
REL8_3_5
REL8_3_6
REL8_3_7
REL8_3_8
REL8_3_9
REL8_3_BETA1
REL8_3_BETA2
REL8_3_BETA3
REL8_3_BETA4
REL8_3_RC1
REL8_3_RC2
REL8_4_0
REL8_4_1
REL8_4_10
REL8_4_11
REL8_4_12
REL8_4_13
REL8_4_14
REL8_4_15
REL8_4_16
REL8_4_17
REL8_4_18
REL8_4_19
REL8_4_2
REL8_4_20
REL8_4_21
REL8_4_22
REL8_4_3
REL8_4_4
REL8_4_5
REL8_4_6
REL8_4_7
REL8_4_8
REL8_4_9
REL8_4_BETA1
REL8_4_BETA2
REL8_4_RC1
REL8_4_RC2
REL8_5_ALPHA1
REL8_5_ALPHA2
REL8_5_ALPHA3
REL9_0_0
REL9_0_1
REL9_0_10
REL9_0_11
REL9_0_12
REL9_0_13
REL9_0_14
REL9_0_15
REL9_0_16
REL9_0_17
REL9_0_18
REL9_0_19
REL9_0_2
REL9_0_20
REL9_0_21
REL9_0_22
REL9_0_23
REL9_0_3
REL9_0_4
REL9_0_5
REL9_0_6
REL9_0_7
REL9_0_8
REL9_0_9
REL9_0_ALPHA4
REL9_0_ALPHA5
REL9_0_BETA1
REL9_0_BETA2
REL9_0_BETA3
REL9_0_BETA4
REL9_0_RC1
REL9_1_0
REL9_1_1
REL9_1_10
REL9_1_11
REL9_1_12
REL9_1_13
REL9_1_14
REL9_1_15
REL9_1_16
REL9_1_17
REL9_1_18
REL9_1_19
REL9_1_2
REL9_1_20
REL9_1_21
REL9_1_22
REL9_1_23
REL9_1_24
REL9_1_3
REL9_1_4
REL9_1_5
REL9_1_6
REL9_1_7
REL9_1_8
REL9_1_9
REL9_1_ALPHA1
REL9_1_ALPHA2
REL9_1_ALPHA3
REL9_1_ALPHA4
REL9_1_ALPHA5
REL9_1_BETA1
REL9_1_BETA2
REL9_1_BETA3
REL9_1_RC1
REL9_2_0
REL9_2_1
REL9_2_10
REL9_2_11
REL9_2_12
REL9_2_13
REL9_2_14
REL9_2_15
REL9_2_16
REL9_2_17
REL9_2_18
REL9_2_19
REL9_2_2
REL9_2_20
REL9_2_21
REL9_2_22
REL9_2_23
REL9_2_24
REL9_2_3
REL9_2_4
REL9_2_5
REL9_2_6
REL9_2_7
REL9_2_8
REL9_2_9
REL9_2_BETA1
REL9_2_BETA2
REL9_2_BETA3
REL9_2_BETA4
REL9_2_RC1
REL9_3_0
REL9_3_1
REL9_3_10
REL9_3_11
REL9_3_12
REL9_3_13
REL9_3_14
REL9_3_15
REL9_3_16
REL9_3_17
REL9_3_18
REL9_3_19
REL9_3_2
REL9_3_20
REL9_3_21
REL9_3_22
REL9_3_23
REL9_3_24
REL9_3_25
REL9_3_3
REL9_3_4
REL9_3_5
REL9_3_6
REL9_3_7
REL9_3_8
REL9_3_9
REL9_3_BETA1
REL9_3_BETA2
REL9_3_RC1
REL9_4_0
REL9_4_1
REL9_4_10
REL9_4_11
REL9_4_12
REL9_4_13
REL9_4_14
REL9_4_15
REL9_4_16
REL9_4_17
REL9_4_18
REL9_4_19
REL9_4_2
REL9_4_20
REL9_4_21
REL9_4_22
REL9_4_23
REL9_4_24
REL9_4_25
REL9_4_26
REL9_4_3
REL9_4_4
REL9_4_5
REL9_4_6
REL9_4_7
REL9_4_8
REL9_4_9
REL9_4_BETA1
REL9_4_BETA2
REL9_4_BETA3
REL9_4_RC1
REL9_5_0
REL9_5_1
REL9_5_10
REL9_5_11
REL9_5_12
REL9_5_13
REL9_5_14
REL9_5_15
REL9_5_16
REL9_5_17
REL9_5_18
REL9_5_19
REL9_5_2
REL9_5_20
REL9_5_21
REL9_5_22
REL9_5_23
REL9_5_24
REL9_5_25
REL9_5_3
REL9_5_4
REL9_5_5
REL9_5_6
REL9_5_7
REL9_5_8
REL9_5_9
REL9_5_ALPHA1
REL9_5_ALPHA2
REL9_5_BETA1
REL9_5_BETA2
REL9_5_RC1
REL9_6_0
REL9_6_1
REL9_6_10
REL9_6_11
REL9_6_12
REL9_6_13
REL9_6_14
REL9_6_15
REL9_6_16
REL9_6_17
REL9_6_18
REL9_6_19
REL9_6_2
REL9_6_20
REL9_6_21
REL9_6_22
REL9_6_23
REL9_6_24
REL9_6_3
REL9_6_4
REL9_6_5
REL9_6_6
REL9_6_7
REL9_6_8
REL9_6_9
REL9_6_BETA1
REL9_6_BETA2
REL9_6_BETA3
REL9_6_BETA4
REL9_6_RC1
REL_10_0
REL_10_1
REL_10_10
REL_10_11
REL_10_12
REL_10_13
REL_10_14
REL_10_15
REL_10_16
REL_10_17
REL_10_18
REL_10_19
REL_10_2
REL_10_20
REL_10_21
REL_10_22
REL_10_23
REL_10_3
REL_10_4
REL_10_5
REL_10_6
REL_10_7
REL_10_8
REL_10_9
REL_10_BETA1
REL_10_BETA2
REL_10_BETA3
REL_10_BETA4
REL_10_RC1
REL_11_0
REL_11_1
REL_11_10
REL_11_11
REL_11_12
REL_11_13
REL_11_14
REL_11_15
REL_11_16
REL_11_17
REL_11_18
REL_11_19
REL_11_2
REL_11_20
REL_11_21
REL_11_22
REL_11_3
REL_11_4
REL_11_5
REL_11_6
REL_11_7
REL_11_8
REL_11_9
REL_11_BETA1
REL_11_BETA2
REL_11_BETA3
REL_11_BETA4
REL_11_RC1
REL_12_0
REL_12_1
REL_12_10
REL_12_11
REL_12_12
REL_12_13
REL_12_14
REL_12_15
REL_12_16
REL_12_17
REL_12_18
REL_12_19
REL_12_2
REL_12_20
REL_12_21
REL_12_22
REL_12_3
REL_12_4
REL_12_5
REL_12_6
REL_12_7
REL_12_8
REL_12_9
REL_12_BETA1
REL_12_BETA2
REL_12_BETA3
REL_12_BETA4
REL_12_RC1
REL_13_0
REL_13_1
REL_13_10
REL_13_11
REL_13_12
REL_13_13
REL_13_14
REL_13_15
REL_13_16
REL_13_17
REL_13_18
REL_13_19
REL_13_2
REL_13_20
REL_13_21
REL_13_22
REL_13_23
REL_13_3
REL_13_4
REL_13_5
REL_13_6
REL_13_7
REL_13_8
REL_13_9
REL_13_BETA1
REL_13_BETA2
REL_13_BETA3
REL_13_RC1
REL_14_0
REL_14_1
REL_14_10
REL_14_11
REL_14_12
REL_14_13
REL_14_14
REL_14_15
REL_14_16
REL_14_17
REL_14_18
REL_14_19
REL_14_2
REL_14_20
REL_14_3
REL_14_4
REL_14_5
REL_14_6
REL_14_7
REL_14_8
REL_14_9
REL_14_BETA1
REL_14_BETA2
REL_14_BETA3
REL_14_RC1
REL_15_0
REL_15_1
REL_15_10
REL_15_11
REL_15_12
REL_15_13
REL_15_14
REL_15_15
REL_15_2
REL_15_3
REL_15_4
REL_15_5
REL_15_6
REL_15_7
REL_15_8
REL_15_9
REL_15_BETA1
REL_15_BETA2
REL_15_BETA3
REL_15_BETA4
REL_15_RC1
REL_15_RC2
REL_16_0
REL_16_1
REL_16_10
REL_16_11
REL_16_2
REL_16_3
REL_16_4
REL_16_5
REL_16_6
REL_16_7
REL_16_8
REL_16_9
REL_16_BETA1
REL_16_BETA2
REL_16_BETA3
REL_16_RC1
REL_17_0
REL_17_1
REL_17_2
REL_17_3
REL_17_4
REL_17_5
REL_17_6
REL_17_7
REL_17_BETA1
REL_17_BETA2
REL_17_BETA3
REL_17_RC1
REL_18_0
REL_18_1
REL_18_BETA1
REL_18_BETA2
REL_18_BETA3
REL_18_RC1
Release_1_0_2
Release_2_0
Release_2_0_0
release-6-3
${ noResults }
691 Commits (27b77ecf9f4d5be211900eda54d8155ada50d696)
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
27b77ecf9f |
Update copyright for 2022
Backpatch-through: 10 |
4 years ago |
|
|
3804539e48 |
Replace random(), pg_erand48(), etc with a better PRNG API and algorithm.
Standardize on xoroshiro128** as our basic PRNG algorithm, eliminating a bunch of platform dependencies as well as fundamentally-obsolete PRNG code. In addition, this API replacement will ease replacing the algorithm again in future, should that become necessary. xoroshiro128** is a few percent slower than the drand48 family, but it can produce full-width 64-bit random values not only 48-bit, and it should be much more trustworthy. It's likely to be noticeably faster than the platform's random(), depending on which platform you are thinking about; and we can have non-global state vectors easily, unlike with random(). It is not cryptographically strong, but neither are the functions it replaces. Fabien Coelho, reviewed by Dean Rasheed, Aleksander Alekseev, and myself Discussion: https://postgr.es/m/alpine.DEB.2.22.394.2105241211230.165418@pseudo |
4 years ago |
|
|
411137a429 |
Flush Memoize cache when non-key parameters change, take 2
It's possible that a subplan below a Memoize node contains a parameter from above the Memoize node. If this parameter changes then cache entries may become out-dated due to the new parameter value. Previously Memoize was mistakenly not aware of this. We fix this here by flushing the cache whenever a parameter that's not part of the cache key changes. Bug: #17213 Reported by: Elvis Pranskevichus Author: David Rowley Discussion: https://postgr.es/m/17213-988ed34b225a2862@postgresql.org Backpatch-through: 14, where Memoize was added |
4 years ago |
|
|
dad20ad470 |
Revert "Flush Memoize cache when non-key parameters change"
This reverts commit
|
4 years ago |
|
|
1050048a31 |
Flush Memoize cache when non-key parameters change
It's possible that a subplan below a Memoize node contains a parameter from above the Memoize node. If this parameter changes then cache entries may become out-dated due to the new parameter value. Previously Memoize was mistakenly not aware of this. We fix this here by flushing the cache whenever a parameter that's not part of the cache key changes. Bug: #17213 Reported by: Elvis Pranskevichus Author: David Rowley Discussion: https://postgr.es/m/17213-988ed34b225a2862@postgresql.org Backpatch-through: 14, where Memoize was added |
4 years ago |
|
|
e502150f7d |
Allow Memoize to operate in binary comparison mode
Memoize would always use the hash equality operator for the cache key types to determine if the current set of parameters were the same as some previously cached set. Certain types such as floating points where -0.0 and +0.0 differ in their binary representation but are classed as equal by the hash equality operator may cause problems as unless the join uses the same operator it's possible that whichever join operator is being used would be able to distinguish the two values. In which case we may accidentally return in the incorrect rows out of the cache. To fix this here we add a binary mode to Memoize to allow it to the current set of parameters to previously cached values by comparing bit-by-bit rather than logically using the hash equality operator. This binary mode is always used for LATERAL joins and it's used for normal joins when any of the join operators are not hashable. Reported-by: Tom Lane Author: David Rowley Discussion: https://postgr.es/m/3004308.1632952496@sss.pgh.pa.us Backpatch-through: 14, where Memoize was added |
4 years ago |
|
|
83f4fcc655 |
Change the name of the Result Cache node to Memoize
"Result Cache" was never a great name for this node, but nobody managed to come up with another name that anyone liked enough. That was until David Johnston mentioned "Node Memoization", which Tom Lane revised to just "Memoize". People seem to like "Memoize", so let's do the rename. Reviewed-by: Justin Pryzby Discussion: https://postgr.es/m/20210708165145.GG1176@momjian.us Backpatch-through: 14, where Result Cache was introduced |
5 years ago |
|
|
e56bce5d43 |
Reconsider the handling of procedure OUT parameters.
Commit
|
5 years ago |
|
|
049e1e2edb |
Fix mishandling of resjunk columns in ON CONFLICT ... UPDATE tlists.
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present. If it happens, the ON CONFLICT UPDATE code path would end up storing tuples that include the values of the extra resjunk columns. That's fairly harmless in the short run, but if new columns are added to the table then the values would become accessible, possibly leading to malfunctions if they don't match the datatypes of the new columns. This had escaped notice through a confluence of missing sanity checks, including * There's no cross-check that a tuple presented to heap_insert or heap_update matches the table rowtype. While it's difficult to check that fully at reasonable cost, we can easily add assertions that there aren't too many columns. * The output-column-assignment cases in execExprInterp.c lacked any sanity checks on the output column numbers, which seems like an oversight considering there are plenty of assertion checks on input column numbers. Add assertions there too. * We failed to apply nodeModifyTable's ExecCheckPlanOutput() to the ON CONFLICT UPDATE tlist. That wouldn't have caught this specific error, since that function is chartered to ignore resjunk columns; but it sure seems like a bad omission now that we've seen this bug. In HEAD, the right way to fix this is to make the processing of ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists now do, that is don't add "SET x = x" entries, and use ExecBuildUpdateProjection to evaluate the tlist and combine it with old values of the not-set columns. This adds a little complication to ExecBuildUpdateProjection, but allows removal of a comparable amount of now-dead code from the planner. In the back branches, the most expedient solution seems to be to (a) use an output slot for the ON CONFLICT UPDATE projection that actually matches the target table, and then (b) invent a variant of ExecBuildProjectionInfo that can be told to not store values resulting from resjunk columns, so it doesn't try to store into nonexistent columns of the output slot. (We can't simply ignore the resjunk columns altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.) This works back to v10. In 9.6, projections work much differently and we can't cheaply give them such an option. The 9.6 version of this patch works by inserting a JunkFilter when it's necessary to get rid of resjunk columns. In addition, v11 and up have the reverse problem when trying to perform ON CONFLICT UPDATE on a partitioned table. Through a further oversight, adjust_partition_tlist() discarded resjunk columns when re-ordering the ON CONFLICT UPDATE tlist to match a partition. This accidentally prevented the storing-bogus-tuples problem, but at the cost that MULTIEXPR_SUBLINK cases didn't work, typically crashing if more than one row has to be updated. Fix by preserving resjunk columns in that routine. (I failed to resist the temptation to add more assertions there too, and to do some minor code beautification.) Per report from Andres Freund. Back-patch to all supported branches. Security: CVE-2021-32028 |
5 years ago |
|
|
7645376774 |
Rename find_em_expr_usable_for_sorting_rel.
I didn't particularly like this function name, as it fails to express what's going on. Also, returning the sort expression alone isn't too helpful --- typically, a caller would also need some other fields of the EquivalenceMember. But the sole caller really only needs a bool result, so let's make it "bool relation_can_be_sorted_early()". Discussion: https://postgr.es/m/91f3ec99-85a4-fa55-ea74-33f85a5c651f@swarm64.com |
5 years ago |
|
|
3753982441 |
Fix planner failure in some cases of sorting by an aggregate.
An oversight introduced by the incremental-sort patches caused "could not find pathkey item to sort" errors in some situations where a sort key involves an aggregate or window function. The basic problem here is that find_em_expr_usable_for_sorting_rel isn't properly modeling what prepare_sort_from_pathkeys will do later. Rather than hoping we can keep those functions in sync, let's refactor so that they actually share the code for identifying a suitable sort expression. With this refactoring, tlist.c's tlist_member_ignore_relabel is unused. I removed it in HEAD but left it in place in v13, in case any extensions are using it. Per report from Luc Vlaming. Back-patch to v13 where the problem arose. James Coleman and Tom Lane Discussion: https://postgr.es/m/91f3ec99-85a4-fa55-ea74-33f85a5c651f@swarm64.com |
5 years ago |
|
|
50e17ad281 |
Speedup ScalarArrayOpExpr evaluation
ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand side have traditionally been evaluated by using a linear search over the array. When these arrays contain large numbers of elements then this linear search could become a significant part of execution time. Here we add a new method of evaluating ScalarArrayOpExpr expressions to allow them to be evaluated by first building a hash table containing each element, then on subsequent evaluations, we just probe that hash table to determine if there is a match. The planner is in charge of determining when this optimization is possible and it enables it by setting hashfuncid in the ScalarArrayOpExpr. The executor will only perform the hash table evaluation when the hashfuncid is set. This means that not all cases are optimized. For example CHECK constraints containing an IN clause won't go through the planner, so won't get the hashfuncid set. We could maybe do something about that at some later date. The reason we're not doing it now is from fear that we may slow down cases where the expression is evaluated only once. Those cases can be common, for example, a single row INSERT to a table with a CHECK constraint containing an IN clause. In the planner, we enable this when there are suitable hash functions for the ScalarArrayOpExpr's operator and only when there is at least MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array. The threshold is currently set to 9. Author: James Coleman, David Rowley Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com |
5 years ago |
|
|
9eacee2e62 |
Add Result Cache executor node (take 2)
Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com |
5 years ago |
|
|
28b3e3905c |
Revert b6002a796
This removes "Add Result Cache executor node". It seems that something weird is going on with the tracking of cache hits and misses as highlighted by many buildfarm animals. It's not yet clear what the problem is as other parts of the plan indicate that the cache did work correctly, it's just the hits and misses that were being reported as 0. This is especially a bad time to have the buildfarm so broken, so reverting before too many more animals go red. Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com |
5 years ago |
|
|
b6002a796d |
Add Result Cache executor node
Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com |
5 years ago |
|
|
86dc90056d |
Rework planning and execution of UPDATE and DELETE.
This patch makes two closely related sets of changes: 1. For UPDATE, the subplan of the ModifyTable node now only delivers the new values of the changed columns (i.e., the expressions computed in the query's SET clause) plus row identity information such as CTID. ModifyTable must re-fetch the original tuple to merge in the old values of any unchanged columns. The core advantage of this is that the changed columns are uniform across all tables of an inherited or partitioned target relation, whereas the other columns might not be. A secondary advantage, when the UPDATE involves joins, is that less data needs to pass through the plan tree. The disadvantage of course is an extra fetch of each tuple to be updated. However, that seems to be very nearly free in context; even worst-case tests don't show it to add more than a couple percent to the total query cost. At some point it might be interesting to combine the re-fetch with the tuple access that ModifyTable must do anyway to mark the old tuple dead; but that would require a good deal of refactoring and it seems it wouldn't buy all that much, so this patch doesn't attempt it. 2. For inherited UPDATE/DELETE, instead of generating a separate subplan for each target relation, we now generate a single subplan that is just exactly like a SELECT's plan, then stick ModifyTable on top of that. To let ModifyTable know which target relation a given incoming row refers to, a tableoid junk column is added to the row identity information. This gets rid of the horrid hack that was inheritance_planner(), eliminating O(N^2) planning cost and memory consumption in cases where there were many unprunable target relations. Point 2 of course requires point 1, so that there is a uniform definition of the non-junk columns to be returned by the subplan. We can't insist on uniform definition of the row identity junk columns however, if we want to keep the ability to have both plain and foreign tables in a partitioning hierarchy. Since it wouldn't scale very far to have every child table have its own row identity column, this patch includes provisions to merge similar row identity columns into one column of the subplan result. In particular, we can merge the whole-row Vars typically used as row identity by FDWs into one column by pretending they are type RECORD. (It's still okay for the actual composite Datums to be labeled with the table's rowtype OID, though.) There is more that can be done to file down residual inefficiencies in this patch, but it seems to be committable now. FDW authors should note several API changes: * The argument list for AddForeignUpdateTargets() has changed, and so has the method it must use for adding junk columns to the query. Call add_row_identity_var() instead of manipulating the parse tree directly. You might want to reconsider exactly what you're adding, too. * PlanDirectModify() must now work a little harder to find the ForeignScan plan node; if the foreign table is part of a partitioning hierarchy then the ForeignScan might not be the direct child of ModifyTable. See postgres_fdw for sample code. * To check whether a relation is a target relation, it's no longer sufficient to compare its relid to root->parse->resultRelation. Instead, check it against all_result_relids or leaf_result_relids, as appropriate. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com |
5 years ago |
|
|
27e1f14563 |
Add support for asynchronous execution.
This implements asynchronous execution, which runs multiple parts of a non-parallel-aware Append concurrently rather than serially to improve performance when possible. Currently, the only node type that can be run concurrently is a ForeignScan that is an immediate child of such an Append. In the case where such ForeignScans access data on different remote servers, this would run those ForeignScans concurrently, and overlap the remote operations to be performed simultaneously, so it'll improve the performance especially when the operations involve time-consuming ones such as remote join and remote aggregation. We may extend this to other node types such as joins or aggregates over ForeignScans in the future. This also adds the support for postgres_fdw, which is enabled by the table-level/server-level option "async_capable". The default is false. Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit is mostly based on the patch proposed by Robert Haas, but also uses stuff from the patch proposed by Kyotaro Horiguchi and from the patch proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and others. Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com |
5 years ago |
|
|
26acb54a13 |
Revert "Enable parallel SELECT for "INSERT INTO ... SELECT ..."."
To allow inserts in parallel-mode this feature has to ensure that all the constraints, triggers, etc. are parallel-safe for the partition hierarchy which is costly and we need to find a better way to do that. Additionally, we could have used existing cached information in some cases like indexes, domains, etc. to determine the parallel-safety. List of commits reverted, in reverse chronological order: |
5 years ago |
|
|
c8f78b6161 |
Add a new GUC and a reloption to enable inserts in parallel-mode.
Commit
|
5 years ago |
|
|
05c8482f7f |
Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Parallel SELECT can't be utilized for INSERT in the following cases: - INSERT statement uses the ON CONFLICT DO UPDATE clause - Target table has a parallel-unsafe: trigger, index expression or predicate, column default expression or check constraint - Target table has a parallel-unsafe domain constraint on any column - Target table is a partitioned table with a parallel-unsafe partition key expression or support function The planner is updated to perform additional parallel-safety checks for the cases listed above, for determining whether it is safe to run INSERT in parallel-mode with an underlying parallel SELECT. The planner will consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided nothing unsafe is found from the additional parallel-safety checks, or from the existing parallel-safety checks for SELECT. While checking parallel-safety, we need to check it for all the partitions on the table which can be costly especially when we decide not to use a parallel plan. So, in a separate patch, we will introduce a GUC and or a reloption to enable/disable parallelism for Insert statements. Prior to entering parallel-mode for the execution of INSERT with parallel SELECT, a TransactionId is acquired and assigned to the current transaction state. This is necessary to prevent the INSERT from attempting to assign the TransactionId whilst in parallel-mode, which is not allowed. This approach has a disadvantage in that if the underlying SELECT does not return any rows, then the TransactionId is not used, however that shouldn't happen in practice in many cases. Author: Greg Nancarrow, Amit Langote, Amit Kapila Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila Tested-by: Tang, Haiying Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com |
5 years ago |
|
|
bb437f995d |
Add TID Range Scans to support efficient scanning ranges of TIDs
This adds a new executor node named TID Range Scan. The query planner will generate paths for TID Range scans when quals are discovered on base relations which search for ranges on the table's ctid column. These ranges may be open at either end. For example, WHERE ctid >= '(10,0)'; will return all tuples on page 10 and over. To support this, two new optional callback functions have been added to table AM. scan_set_tidrange is used to set the scan range to just the given range of TIDs. scan_getnextslot_tidrange fetches the next tuple in the given range. For AMs were scanning ranges of TIDs would not make sense, these functions can be set to NULL in the TableAmRoutine. The query planner won't generate TID Range Scan Paths in that case. Author: Edmund Horner, David Rowley Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com |
5 years ago |
|
|
f003a7522b |
Remove [Merge]AppendPath.partitioned_rels.
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit
|
5 years ago |
|
|
55dc86eca7 |
Fix pull_varnos' miscomputation of relids set for a PlaceHolderVar.
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins. This could result in a malformed plan. The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.
The right value to use is the join level we actually intend to evaluate
the PHV at. We can get that from the ph_eval_at field of the associated
PlaceHolderInfo. However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level. (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.) Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.
The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos. We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter. (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)
Back-patch to v12. The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit
|
5 years ago |
|
|
ca3b37487b |
Update copyright for 2021
Backpatch-through: 9.5 |
5 years ago |
|
|
fac1b470a9 |
Disallow SRFs when considering sorts below Gather Merge
While we do allow SRFs in ORDER BY, scan/join processing should not consider such cases - such sorts should only happen via final Sort atop a ProjectSet. So make sure we don't try adding such sorts below Gather Merge, just like we do for expressions that are volatile and/or not parallel safe. Backpatch to PostgreSQL 13, where this code was introduced as part of the Incremental Sort patch. Author: James Coleman Reviewed-by: Tomas Vondra Backpatch-through: 13 Discussion: https://postgr.es/m/CAAaqYe8cK3g5CfLC4w7bs=hC0mSksZC=H5M8LSchj5e5OxpTAg@mail.gmail.com Discussion: https://postgr.es/m/295524.1606246314%40sss.pgh.pa.us |
5 years ago |
|
|
86b7cca72d |
Check parallel safety in generate_useful_gather_paths
Commit
|
5 years ago |
|
|
25a9e54d2d |
Improve estimation of OR clauses using extended statistics.
Formerly we only applied extended statistics to an OR clause as part of the clauselist_selectivity() code path for an OR clause appearing in an implicitly-ANDed list of clauses. This meant that it could only use extended statistics if all sub-clauses of the OR clause were covered by a single extended statistics object. Instead, teach clause_selectivity() how to apply extended statistics to an OR clause by handling its ORed list of sub-clauses in a similar manner to an implicitly-ANDed list of sub-clauses, but with different combination rules. This allows one or more extended statistics objects to be used to estimate all or part of the list of sub-clauses. Any remaining sub-clauses are then treated as if they are independent. Additionally, to avoid double-application of extended statistics, this introduces "extended" versions of clause_selectivity() and clauselist_selectivity(), which include an option to ignore extended statistics. This replaces the old clauselist_selectivity_simple() function which failed to completely ignore extended statistics when called from the extended statistics code. A known limitation of the current infrastructure is that an AND clause under an OR clause is not treated as compatible with extended statistics (because we don't build RestrictInfos for such sub-AND clauses). Thus, for example, "(a=1 AND b=1) OR (a=2 AND b=2)" will currently be treated as two independent AND clauses (each of which may be estimated using extended statistics), but extended statistics will not currently be used to account for any possible overlap between those clauses. Improving that is left as a task for the future. Original patch by Tomas Vondra, with additional improvements by me. Discussion: https://postgr.es/m/20200113230008.g67iyk4cs3xbnjju@development |
5 years ago |
|
|
8286223f3d |
Fix missing outfuncs.c support for IncrementalSortPath.
For debugging purposes, Path nodes are supposed to have outfuncs support, but this was overlooked in the original incremental sort patch. While at it, clean up a couple other minor oversights, as well as bizarre choice of return type for create_incremental_sort_path(). (All the existing callers just cast it to "Path *" immediately, so they don't care, but some future caller might care.) outfuncs.c fix by Zhijie Hou, the rest by me Discussion: https://postgr.es/m/324c4d81d8134117972a5b1f6cdf9560@G08CNEXMBPEKD05.g08.fujitsu.local |
5 years ago |
|
|
6742e14959 |
Fix typo in comment.
Author: Haiying Tang <tanghy.fnst@cn.fujitsu.com> Discussion: https://postgr.es/m/48a0928ac94b497d9c40acf1de394c15@G08CNEXMBPEKD05.g08.fujitsu.local |
5 years ago |
|
|
0a2bc5d61e |
Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count the number of calls to transition and final functions correctly. Bump catalog version, because views can contain Aggrefs. Reviewed-by: Andres Freund Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi |
5 years ago |
|
|
3b9b01f75d |
Remove unnecessary #include.
Justin Pryzby Discussion: https://postgr.es/m/20201123205505.GJ24052@telsasoft.com |
5 years ago |
|
|
ebb7ae839d |
Fix get_useful_pathkeys_for_relation for volatile expressions
When considering Incremental Sort below a Gather Merge, we need to be a bit more careful when matching pathkeys to EC members. It's not enough to find a member whose Vars are all in the current relation's target; volatile expressions in particular need to be contained in the target, otherwise it's too early to use the pathkey. Reported-by: Jaime Casanova Author: James Coleman Reviewed-by: Tomas Vondra Backpatch-through: 13, where the incremental sort code was added Discussion: https://postgr.es/m/CAJGNTeNaxpXgBVcRhJX%2B2vSbq%2BF2kJqGBcvompmpvXb7pq%2BoFA%40mail.gmail.com |
5 years ago |
|
|
ad1c36b070 |
Fix foreign-key selectivity estimation in the presence of constants.
get_foreign_key_join_selectivity() looks for join clauses that equate the two sides of the FK constraint. However, if we have a query like "WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join clause, because equivclass.c replaces the given clauses with "fktab.a = 1 and pktab.a = 1", which can be enforced at the scan level, leaving nothing to be done for column "a" at the join level. We can fix that expectation without much trouble, but then a new problem arises: applying the foreign-key-based selectivity rule produces a rowcount underestimate, because we're effectively double-counting the selectivity of the "fktab.a = 1" clause. So we have to cancel that selectivity out of the estimate. To fix, refactor process_implied_equality() so that it can pass back the new RestrictInfo to its callers in equivclass.c, allowing the generated "fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives list. Then it's not much trouble to dig out the relevant RestrictInfo when we need to adjust an FK selectivity estimate. (While at it, we can also remove the expensive use of initialize_mergeclause_eclasses() to set up the new RestrictInfo's left_ec and right_ec pointers. The equivclass.c code can set those basically for free.) This seems like clearly a bug fix, but I'm hesitant to back-patch it, first because there's some API/ABI risk for extensions and second because we're usually loath to destabilize plan choices in stable branches. Per report from Sigrid Ehrenreich. Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com |
5 years ago |
|
|
1e7629d2c9 |
Be more careful about the shape of hashable subplan clauses.
nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan has the form of one or more OpExprs whose LHS is an expression of the outer query's, while the RHS is an expression over Params representing output columns of the subquery. However, the planner only went as far as verifying that the clauses were all binary OpExprs. This works 99.99% of the time, because the clauses have the right shape when emitted by the parser --- but it's possible for function inlining to break that, as reported by PegoraroF10. To fix, teach the planner to check that the LHS and RHS contain the right things, or more accurately don't contain the wrong things. Given that this has been broken for years without anyone noticing, it seems sufficient to just give up hashing when it happens, rather than go to the trouble of commuting the clauses back again (which wouldn't necessarily work anyway). While poking at that, I also noticed that nodeSubplan.c had a baked-in assumption that the number of hash clauses is identical to the number of subquery output columns. Again, that's fine as far as parser output goes, but it's not hard to break it via function inlining. There seems little reason for that assumption though --- AFAICS, the only thing it's buying us is not having to store the number of hash clauses explicitly. Adding code to the planner to reject such cases would take more code than getting nodeSubplan.c to cope, so I fixed it that way. This has been broken for as long as we've had hashable SubPlans, so back-patch to all supported branches. Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com |
5 years ago |
|
|
bcbf9446a2 |
Remove hashagg_avoid_disk_plan GUC.
Note: This GUC was originally named enable_hashagg_disk when it appeared in commit |
6 years ago |
|
|
e61225ffab |
Rename enable_incrementalsort for clarity
Author: James Coleman <jtc331@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/df652910-e985-9547-152c-9d4357dc3979%402ndquadrant.com |
6 years ago |
|
|
92c58fd948 |
Rework HashAgg GUCs.
Eliminate enable_groupingsets_hash_disk, which was primarily useful for testing grouping sets that use HashAgg and spill. Instead, hack the table stats to convince the planner to choose hashed aggregation for grouping sets that will spill to disk. Suggested by Melanie Plageman. Rename enable_hashagg_disk to hashagg_avoid_disk_plan, and invert the meaning of on/off. The new name indicates more strongly that it only affects the planner. Also, the word "avoid" is less definite, which should avoid surprises when HashAgg still needs to use the disk. Change suggested by Justin Pryzby, though I chose a different GUC name. Discussion: https://postgr.es/m/CAAKRu_aisiENMsPM2gC4oUY1hHG3yrCwY-fXUg22C6_MJUwQdA%40mail.gmail.com Discussion: https://postgr.es/m/20200610021544.GA14879@telsasoft.com Backpatch-through: 13 |
6 years ago |
|
|
357889eb17
|
Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL standard's spelling of LIMIT), where you additionally get rows that compare equal to the last of those N rows by the columns in the mandatory ORDER BY clause. There was a proposal by Andrew Gierth to implement this functionality in a more powerful way that would yield more features, but the other patch had not been finished at this time, so we decided to use this one for now in the spirit of incremental development. Author: Surafel Temesgen <surafel3000@gmail.com> Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com> Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk |
6 years ago |
|
|
ba3e76cc57 |
Consider Incremental Sort paths at additional places
Commit
|
6 years ago |
|
|
d2d8a229bc |
Implement Incremental Sort
Incremental Sort is an optimized variant of multikey sort for cases when the input is already sorted by a prefix of the requested sort keys. For example when the relation is already sorted by (key1, key2) and we need to sort it by (key1, key2, key3) we can simply split the input rows into groups having equal values in (key1, key2), and only sort/compare the remaining column key3. This has a number of benefits: - Reduced memory consumption, because only a single group (determined by values in the sorted prefix) needs to be kept in memory. This may also eliminate the need to spill to disk. - Lower startup cost, because Incremental Sort produce results after each prefix group, which is beneficial for plans where startup cost matters (like for example queries with LIMIT clause). We consider both Sort and Incremental Sort, and decide based on costing. The implemented algorithm operates in two different modes: - Fetching a minimum number of tuples without check of equality on the prefix keys, and sorting on all columns when safe. - Fetching all tuples for a single prefix group and then sorting by comparing only the remaining (non-prefix) keys. We always start in the first mode, and employ a heuristic to switch into the second mode if we believe it's beneficial - the goal is to minimize the number of unnecessary comparions while keeping memory consumption below work_mem. This is a very old patch series. The idea was originally proposed by Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the patch was taken over by James Coleman, who wrote and rewrote most of the current code. There were many reviewers/contributors since 2013 - I've done my best to pick the most active ones, and listed them in this commit message. Author: James Coleman, Alexander Korotkov Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com |
6 years ago |
|
|
0568e7a2a4 |
Cosmetic improvements for code related to partitionwise join.
Move have_partkey_equi_join and match_expr_to_partition_keys to relnode.c, since they're used only there. Refactor build_joinrel_partition_info to split out the code that fills the joinrel's partition key lists; this doesn't have any non-cosmetic impact, but it seems like a useful separation of concerns. Improve assorted nearby comments. Amit Langote, with a little further editorialization by me Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com |
6 years ago |
|
|
6aba63ef3e |
Allow the planner-related functions and hook to accept the query string.
This commit adds query_string argument into the planner-related functions and hook and allows us to pass the query string to them. Currently there is no user of the query string passed. But the upcoming patch for the planning counters will add the planning hook function into pg_stat_statements and the function will need the query string. So this change will be necessary for that patch. Also this change is useful for some extensions that want to use the query string in their planner hook function. Author: Pascal Legrand, Julien Rouhaud Reviewed-by: Yoshikazu Imai, Tom Lane, Fujii Masao Discussion: https://postgr.es/m/CAOBaU_bU1m3_XF5qKYtSj1ua4dxd=FWDyh2SH4rSJAUUfsGmAQ@mail.gmail.com Discussion: https://postgr.es/m/1583789487074-0.post@n3.nabble.com |
6 years ago |
|
|
1f39bce021 |
Disk-based Hash Aggregation.
While performing hash aggregation, track memory usage when adding new groups to a hash table. If the memory usage exceeds work_mem, enter "spill mode". In spill mode, new groups are not created in the hash table(s), but existing groups continue to be advanced if input tuples match. Tuples that would cause a new group to be created are instead spilled to a logical tape to be processed later. The tuples are spilled in a partitioned fashion. When all tuples from the outer plan are processed (either by advancing the group or spilling the tuple), finalize and emit the groups from the hash table. Then, create new batches of work from the spilled partitions, and select one of the saved batches and process it (possibly spilling recursively). Author: Jeff Davis Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com |
6 years ago |
|
|
c11cb17dc5 |
Save calculated transitionSpace in Agg node.
This will be useful in the upcoming Hash Aggregation work to improve estimates for hash table sizing. Discussion: https://postgr.es/m/37091115219dd522fd9ed67333ee8ed1b7e09443.camel%40j-davis.com |
6 years ago |
|
|
7559d8ebfa |
Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4 |
6 years ago |
|
|
529ebb20aa |
Generate EquivalenceClass members for partitionwise child join rels.
Commit |
6 years ago |
|
|
1661a40505 |
Cosmetic improvements in setup of planner's per-RTE arrays.
Merge setup_append_rel_array into setup_simple_rel_arrays. There's no particularly good reason to keep them separate, and it's inconsistent with the lack of separation in expand_planner_arrays. The only apparent benefit was that the fast path for trivial queries in query_planner() doesn't need to set up the append_rel_array; but all we're saving there is an if-test and NULL assignment, which surely ought to be negligible. Also improve some obsolete comments. Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us |
7 years ago |
|
|
7266d0997d |
Allow functions-in-FROM to be pulled up if they reduce to constants.
This allows simplification of the plan tree in some common usage patterns: we can get rid of a join to the function RTE. In principle we could pull up any immutable expression, but restricting it to Consts avoids the risk that multiple evaluations of the expression might cost more than we can save. (Possibly this could be improved in future --- but we've more or less promised people that putting a function in FROM guarantees single evaluation, so we'd have to tread carefully.) To do this, we need to rearrange when eval_const_expressions() happens for expressions in function RTEs. I moved it to inline_set_returning_functions(), which already has to iterate over every function RTE, and in consequence renamed that function to preprocess_function_rtes(). A useful consequence is that inline_set_returning_function() no longer has to do this for itself, simplifying that code. In passing, break out pull_up_simple_subquery's code that knows where everything that needs pullup_replace_vars() processing is, so that the new pull_up_constant_function() routine can share it. We'd gotten away with one-and-a-half copies of that code so far, since pull_up_simple_values() could assume that a lot of cases didn't apply to it --- but I don't think pull_up_constant_function() can make any simplifying assumptions. Might as well make pull_up_simple_values() use it too. (Possibly this refactoring should go further: maybe we could share some of the code to fill in the pullup_replace_vars_context struct? For now, I left it that the callers fill that completely.) Note: the one existing test case that this patch changes has to be changed because inlining its function RTEs would destroy the point of the test, namely to check join order. Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by Antonin Houska and Anastasia Lubennikova, and whacked around some more by me Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru |
7 years ago |
|
|
c74d49d41c |
Fix many typos and inconsistencies
Author: Alexander Lakhin Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com |
7 years ago |
|
|
3412030205 |
Fix more typos and inconsistencies in the tree
Author: Alexander Lakhin Discussion: https://postgr.es/m/0a5419ea-1452-a4e6-72ff-545b1a5a8076@gmail.com |
7 years ago |