Most parts of the planner should ignore, or indeed never even see, uplevel
Vars because they will be or have been replaced by Params. There were a
couple of places that got it wrong though, probably my fault from recent
changes...
and fix_opids processing to a single recursive pass over the plan tree
executed at the very tail end of planning, rather than haphazardly here
and there at different places. Now that tlist Vars do not get modified
until the very end, it's possible to get rid of the klugy var_equal and
match_varid partial-matching routines, and just use plain equal()
throughout the optimizer. This is a step towards allowing merge and
hash joins to be done on expressions instead of only Vars ...
sort order down into planner, instead of handling it only at the very top
level of the planner. This fixes many things. An explicit sort is now
avoided if there is a cheaper alternative (typically an indexscan) not
only for ORDER BY, but also for the internal sort of GROUP BY. It works
even when there is no other reason (such as a WHERE condition) to consider
the indexscan. It works for indexes on functions. It works for indexes
on functions, backwards. It's just so cool...
CAUTION: I have changed the representation of SortClause nodes, therefore
THIS UPDATE BREAKS STORED RULES. You will need to initdb.
store all ordering information in pathkeys lists (which are now lists of
lists of PathKeyItem nodes, not just lists of lists of vars). This was
a big win --- the code is smaller and IMHO more understandable than it
was, even though it handles more cases. I believe the node changes will
not force an initdb for anyone; planner nodes don't show up in stored
rules.
commuted (ie, the index var appears on the right). These are now handled
the same way as merge and hash join quals that need to be commuted: the
actual reversing of the clause only happens if we actually choose the path
and generate a plan from it. Furthermore, the clause is only reversed in
the 'indexqual' field of the plan, not in the 'indxqualorig' field. This
allows the clause to still be recognized and removed from qpquals of upper
level join plans. Also, simplify and generalize match_clause_to_indexkey;
now it recognizes binary-compatible indexes for join as well as restriction
clauses.
to go along with expression_tree_walker. (_walker is not suitable for
routines that need to alter the tree structure significantly.) Other minor
cleanups in clauses.c.
hashjoinable clause, not one path for a randomly-chosen element of each
set of clauses with the same join operator. That is, if you wrote
SELECT ... WHERE t1.f1 = t2.f2 and t1.f3 = t2.f4,
and both '=' ops were the same opcode (say, all four fields are int4),
then the system would either consider hashing on f1=f2 or on f3=f4,
but it would *not* consider both possibilities. Boo hiss.
Also, revise estimation of hashjoin costs to include a penalty when the
inner join var has a high disbursion --- ie, the most common value is
pretty common. This tends to lead to badly skewed hash bucket occupancy
and way more comparisons than you'd expect on average.
I imagine that the cost calculation still needs tweaking, but at least
it generates a more reasonable plan than before on George Young's example.
rels that the inner path needs to join to, but it was only checking for
the first one. Failure could only have been observed with an OR-clause
that mentions 3 or more tables, and then only if the bogus path was
actually selected as cheapest ...
optimizer rather than parser. This has many advantages, such as not
getting fooled by chance uses of operator names ~ and ~~ (the operators
are identified by OID now), and not creating useless comparison operations
in contexts where the comparisons will not actually be used as indexquals.
The new code also recognizes exact-match LIKE and regex patterns, and
produces an = indexqual instead of >= and <=.
This change does NOT fix the problem with non-ASCII locales: the code
still doesn't know how to generate an upper bound indexqual for non-ASCII
collation order. But it's no worse than before, just the same deficiency
in a different place...
Also, dike out loc_restrictinfo fields in Plan nodes. These were doing
nothing useful in the absence of 'expensive functions' optimization,
and they took a considerable amount of processing to fill in.
identified by Hiroshi (incorrect cost attributed to OR clauses
after multiple passes through set_rest_selec()). I think the code
was trying to allow selectivities of OR subclauses to be passed in
from outside, but noplace was actually passing any useful data, and
set_rest_selec() was passing wrong data.
Restructure representation of "indexqual" in IndexPath nodes so that
it is the same as for indxqual in completed IndexScan nodes: namely,
a toplevel list with an entry for each pass of the index scan, having
sublists that are implicitly-ANDed index qual conditions for that pass.
You don't want to know what the old representation was :-(
Improve documentation of OR-clause indexscan functions.
Remove useless 'notclause' field from RestrictInfo nodes. (This might
force an initdb for anyone who has stored rules containing RestrictInfos,
but I do not think that RestrictInfo ever appears in completed plans.)
will gradually replace all of the boilerplate tree-walk-recursion code that
currently exists in O(N) slightly different forms in N subroutines.
I've had it with adding missing cases to these subroutines...
lists are now plain old garden-variety Lists, allocated with palloc,
rather than specialized expansible-array data allocated with malloc.
This substantially simplifies their handling and eliminates several
sources of memory leakage.
Several basic types of erroneous queries (syntax error, attempt to
insert a duplicate key into a unique index) now demonstrably leak
zero bytes per query.
_copyResult didn't copy subPlan structure completely. _copyAgg is still
busted, apparently because of changes from EXCEPT/INTERSECT patch
(get_agg_tlist_references is no longer sufficient to find all aggregates).
No time to look at that tonight, however.