mirror of https://github.com/postgres/postgres
Tag:
Branch:
Tree:
4bb50236eb
REL2_0B
REL6_4
REL6_5_PATCHES
REL7_0_PATCHES
REL7_1_STABLE
REL7_2_STABLE
REL7_3_STABLE
REL7_4_STABLE
REL8_0_STABLE
REL8_1_STABLE
REL8_2_STABLE
REL8_3_STABLE
REL8_4_STABLE
REL8_5_ALPHA1_BRANCH
REL8_5_ALPHA2_BRANCH
REL8_5_ALPHA3_BRANCH
REL9_0_ALPHA4_BRANCH
REL9_0_ALPHA5_BRANCH
REL9_0_STABLE
REL9_1_STABLE
REL9_2_STABLE
REL9_3_STABLE
REL9_4_STABLE
REL9_5_STABLE
REL9_6_STABLE
REL_10_STABLE
REL_11_STABLE
REL_12_STABLE
REL_13_STABLE
REL_14_STABLE
REL_15_STABLE
REL_16_STABLE
REL_17_STABLE
REL_18_STABLE
Release_1_0_3
WIN32_DEV
ecpg_big_bison
master
PG95-1_01
PG95-1_08
PG95-1_09
REL2_0
REL6_1
REL6_1_1
REL6_2
REL6_2_1
REL6_3
REL6_3_2
REL6_4_2
REL6_5
REL6_5_1
REL6_5_2
REL6_5_3
REL7_0
REL7_0_2
REL7_0_3
REL7_1
REL7_1_1
REL7_1_2
REL7_1_3
REL7_1_BETA
REL7_1_BETA2
REL7_1_BETA3
REL7_2
REL7_2_1
REL7_2_2
REL7_2_3
REL7_2_4
REL7_2_5
REL7_2_6
REL7_2_7
REL7_2_8
REL7_2_BETA1
REL7_2_BETA2
REL7_2_BETA3
REL7_2_BETA4
REL7_2_BETA5
REL7_2_RC1
REL7_2_RC2
REL7_3
REL7_3_1
REL7_3_10
REL7_3_11
REL7_3_12
REL7_3_13
REL7_3_14
REL7_3_15
REL7_3_16
REL7_3_17
REL7_3_18
REL7_3_19
REL7_3_2
REL7_3_20
REL7_3_21
REL7_3_3
REL7_3_4
REL7_3_5
REL7_3_6
REL7_3_7
REL7_3_8
REL7_3_9
REL7_4
REL7_4_1
REL7_4_10
REL7_4_11
REL7_4_12
REL7_4_13
REL7_4_14
REL7_4_15
REL7_4_16
REL7_4_17
REL7_4_18
REL7_4_19
REL7_4_2
REL7_4_20
REL7_4_21
REL7_4_22
REL7_4_23
REL7_4_24
REL7_4_25
REL7_4_26
REL7_4_27
REL7_4_28
REL7_4_29
REL7_4_3
REL7_4_30
REL7_4_4
REL7_4_5
REL7_4_6
REL7_4_7
REL7_4_8
REL7_4_9
REL7_4_BETA1
REL7_4_BETA2
REL7_4_BETA3
REL7_4_BETA4
REL7_4_BETA5
REL7_4_RC1
REL7_4_RC2
REL8_0_0
REL8_0_0BETA1
REL8_0_0BETA2
REL8_0_0BETA3
REL8_0_0BETA4
REL8_0_0BETA5
REL8_0_0RC1
REL8_0_0RC2
REL8_0_0RC3
REL8_0_0RC4
REL8_0_0RC5
REL8_0_1
REL8_0_10
REL8_0_11
REL8_0_12
REL8_0_13
REL8_0_14
REL8_0_15
REL8_0_16
REL8_0_17
REL8_0_18
REL8_0_19
REL8_0_2
REL8_0_20
REL8_0_21
REL8_0_22
REL8_0_23
REL8_0_24
REL8_0_25
REL8_0_26
REL8_0_3
REL8_0_4
REL8_0_5
REL8_0_6
REL8_0_7
REL8_0_8
REL8_0_9
REL8_1_0
REL8_1_0BETA1
REL8_1_0BETA2
REL8_1_0BETA3
REL8_1_0BETA4
REL8_1_0RC1
REL8_1_1
REL8_1_10
REL8_1_11
REL8_1_12
REL8_1_13
REL8_1_14
REL8_1_15
REL8_1_16
REL8_1_17
REL8_1_18
REL8_1_19
REL8_1_2
REL8_1_20
REL8_1_21
REL8_1_22
REL8_1_23
REL8_1_3
REL8_1_4
REL8_1_5
REL8_1_6
REL8_1_7
REL8_1_8
REL8_1_9
REL8_2_0
REL8_2_1
REL8_2_10
REL8_2_11
REL8_2_12
REL8_2_13
REL8_2_14
REL8_2_15
REL8_2_16
REL8_2_17
REL8_2_18
REL8_2_19
REL8_2_2
REL8_2_20
REL8_2_21
REL8_2_22
REL8_2_23
REL8_2_3
REL8_2_4
REL8_2_5
REL8_2_6
REL8_2_7
REL8_2_8
REL8_2_9
REL8_2_BETA1
REL8_2_BETA2
REL8_2_BETA3
REL8_2_RC1
REL8_3_0
REL8_3_1
REL8_3_10
REL8_3_11
REL8_3_12
REL8_3_13
REL8_3_14
REL8_3_15
REL8_3_16
REL8_3_17
REL8_3_18
REL8_3_19
REL8_3_2
REL8_3_20
REL8_3_21
REL8_3_22
REL8_3_23
REL8_3_3
REL8_3_4
REL8_3_5
REL8_3_6
REL8_3_7
REL8_3_8
REL8_3_9
REL8_3_BETA1
REL8_3_BETA2
REL8_3_BETA3
REL8_3_BETA4
REL8_3_RC1
REL8_3_RC2
REL8_4_0
REL8_4_1
REL8_4_10
REL8_4_11
REL8_4_12
REL8_4_13
REL8_4_14
REL8_4_15
REL8_4_16
REL8_4_17
REL8_4_18
REL8_4_19
REL8_4_2
REL8_4_20
REL8_4_21
REL8_4_22
REL8_4_3
REL8_4_4
REL8_4_5
REL8_4_6
REL8_4_7
REL8_4_8
REL8_4_9
REL8_4_BETA1
REL8_4_BETA2
REL8_4_RC1
REL8_4_RC2
REL8_5_ALPHA1
REL8_5_ALPHA2
REL8_5_ALPHA3
REL9_0_0
REL9_0_1
REL9_0_10
REL9_0_11
REL9_0_12
REL9_0_13
REL9_0_14
REL9_0_15
REL9_0_16
REL9_0_17
REL9_0_18
REL9_0_19
REL9_0_2
REL9_0_20
REL9_0_21
REL9_0_22
REL9_0_23
REL9_0_3
REL9_0_4
REL9_0_5
REL9_0_6
REL9_0_7
REL9_0_8
REL9_0_9
REL9_0_ALPHA4
REL9_0_ALPHA5
REL9_0_BETA1
REL9_0_BETA2
REL9_0_BETA3
REL9_0_BETA4
REL9_0_RC1
REL9_1_0
REL9_1_1
REL9_1_10
REL9_1_11
REL9_1_12
REL9_1_13
REL9_1_14
REL9_1_15
REL9_1_16
REL9_1_17
REL9_1_18
REL9_1_19
REL9_1_2
REL9_1_20
REL9_1_21
REL9_1_22
REL9_1_23
REL9_1_24
REL9_1_3
REL9_1_4
REL9_1_5
REL9_1_6
REL9_1_7
REL9_1_8
REL9_1_9
REL9_1_ALPHA1
REL9_1_ALPHA2
REL9_1_ALPHA3
REL9_1_ALPHA4
REL9_1_ALPHA5
REL9_1_BETA1
REL9_1_BETA2
REL9_1_BETA3
REL9_1_RC1
REL9_2_0
REL9_2_1
REL9_2_10
REL9_2_11
REL9_2_12
REL9_2_13
REL9_2_14
REL9_2_15
REL9_2_16
REL9_2_17
REL9_2_18
REL9_2_19
REL9_2_2
REL9_2_20
REL9_2_21
REL9_2_22
REL9_2_23
REL9_2_24
REL9_2_3
REL9_2_4
REL9_2_5
REL9_2_6
REL9_2_7
REL9_2_8
REL9_2_9
REL9_2_BETA1
REL9_2_BETA2
REL9_2_BETA3
REL9_2_BETA4
REL9_2_RC1
REL9_3_0
REL9_3_1
REL9_3_10
REL9_3_11
REL9_3_12
REL9_3_13
REL9_3_14
REL9_3_15
REL9_3_16
REL9_3_17
REL9_3_18
REL9_3_19
REL9_3_2
REL9_3_20
REL9_3_21
REL9_3_22
REL9_3_23
REL9_3_24
REL9_3_25
REL9_3_3
REL9_3_4
REL9_3_5
REL9_3_6
REL9_3_7
REL9_3_8
REL9_3_9
REL9_3_BETA1
REL9_3_BETA2
REL9_3_RC1
REL9_4_0
REL9_4_1
REL9_4_10
REL9_4_11
REL9_4_12
REL9_4_13
REL9_4_14
REL9_4_15
REL9_4_16
REL9_4_17
REL9_4_18
REL9_4_19
REL9_4_2
REL9_4_20
REL9_4_21
REL9_4_22
REL9_4_23
REL9_4_24
REL9_4_25
REL9_4_26
REL9_4_3
REL9_4_4
REL9_4_5
REL9_4_6
REL9_4_7
REL9_4_8
REL9_4_9
REL9_4_BETA1
REL9_4_BETA2
REL9_4_BETA3
REL9_4_RC1
REL9_5_0
REL9_5_1
REL9_5_10
REL9_5_11
REL9_5_12
REL9_5_13
REL9_5_14
REL9_5_15
REL9_5_16
REL9_5_17
REL9_5_18
REL9_5_19
REL9_5_2
REL9_5_20
REL9_5_21
REL9_5_22
REL9_5_23
REL9_5_24
REL9_5_25
REL9_5_3
REL9_5_4
REL9_5_5
REL9_5_6
REL9_5_7
REL9_5_8
REL9_5_9
REL9_5_ALPHA1
REL9_5_ALPHA2
REL9_5_BETA1
REL9_5_BETA2
REL9_5_RC1
REL9_6_0
REL9_6_1
REL9_6_10
REL9_6_11
REL9_6_12
REL9_6_13
REL9_6_14
REL9_6_15
REL9_6_16
REL9_6_17
REL9_6_18
REL9_6_19
REL9_6_2
REL9_6_20
REL9_6_21
REL9_6_22
REL9_6_23
REL9_6_24
REL9_6_3
REL9_6_4
REL9_6_5
REL9_6_6
REL9_6_7
REL9_6_8
REL9_6_9
REL9_6_BETA1
REL9_6_BETA2
REL9_6_BETA3
REL9_6_BETA4
REL9_6_RC1
REL_10_0
REL_10_1
REL_10_10
REL_10_11
REL_10_12
REL_10_13
REL_10_14
REL_10_15
REL_10_16
REL_10_17
REL_10_18
REL_10_19
REL_10_2
REL_10_20
REL_10_21
REL_10_22
REL_10_23
REL_10_3
REL_10_4
REL_10_5
REL_10_6
REL_10_7
REL_10_8
REL_10_9
REL_10_BETA1
REL_10_BETA2
REL_10_BETA3
REL_10_BETA4
REL_10_RC1
REL_11_0
REL_11_1
REL_11_10
REL_11_11
REL_11_12
REL_11_13
REL_11_14
REL_11_15
REL_11_16
REL_11_17
REL_11_18
REL_11_19
REL_11_2
REL_11_20
REL_11_21
REL_11_22
REL_11_3
REL_11_4
REL_11_5
REL_11_6
REL_11_7
REL_11_8
REL_11_9
REL_11_BETA1
REL_11_BETA2
REL_11_BETA3
REL_11_BETA4
REL_11_RC1
REL_12_0
REL_12_1
REL_12_10
REL_12_11
REL_12_12
REL_12_13
REL_12_14
REL_12_15
REL_12_16
REL_12_17
REL_12_18
REL_12_19
REL_12_2
REL_12_20
REL_12_21
REL_12_22
REL_12_3
REL_12_4
REL_12_5
REL_12_6
REL_12_7
REL_12_8
REL_12_9
REL_12_BETA1
REL_12_BETA2
REL_12_BETA3
REL_12_BETA4
REL_12_RC1
REL_13_0
REL_13_1
REL_13_10
REL_13_11
REL_13_12
REL_13_13
REL_13_14
REL_13_15
REL_13_16
REL_13_17
REL_13_18
REL_13_19
REL_13_2
REL_13_20
REL_13_21
REL_13_22
REL_13_23
REL_13_3
REL_13_4
REL_13_5
REL_13_6
REL_13_7
REL_13_8
REL_13_9
REL_13_BETA1
REL_13_BETA2
REL_13_BETA3
REL_13_RC1
REL_14_0
REL_14_1
REL_14_10
REL_14_11
REL_14_12
REL_14_13
REL_14_14
REL_14_15
REL_14_16
REL_14_17
REL_14_18
REL_14_19
REL_14_2
REL_14_20
REL_14_3
REL_14_4
REL_14_5
REL_14_6
REL_14_7
REL_14_8
REL_14_9
REL_14_BETA1
REL_14_BETA2
REL_14_BETA3
REL_14_RC1
REL_15_0
REL_15_1
REL_15_10
REL_15_11
REL_15_12
REL_15_13
REL_15_14
REL_15_15
REL_15_2
REL_15_3
REL_15_4
REL_15_5
REL_15_6
REL_15_7
REL_15_8
REL_15_9
REL_15_BETA1
REL_15_BETA2
REL_15_BETA3
REL_15_BETA4
REL_15_RC1
REL_15_RC2
REL_16_0
REL_16_1
REL_16_10
REL_16_11
REL_16_2
REL_16_3
REL_16_4
REL_16_5
REL_16_6
REL_16_7
REL_16_8
REL_16_9
REL_16_BETA1
REL_16_BETA2
REL_16_BETA3
REL_16_RC1
REL_17_0
REL_17_1
REL_17_2
REL_17_3
REL_17_4
REL_17_5
REL_17_6
REL_17_7
REL_17_BETA1
REL_17_BETA2
REL_17_BETA3
REL_17_RC1
REL_18_0
REL_18_1
REL_18_BETA1
REL_18_BETA2
REL_18_BETA3
REL_18_RC1
Release_1_0_2
Release_2_0
Release_2_0_0
release-6-3
${ noResults }
1950 Commits (4bb50236eb561f4639e75a393a5a1c9b8681acfb)
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
428b260f87 |
Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs for every partition of a partitioned table, even though many of them might later be deemed uninteresting thanks to partition pruning logic. This incurred significant overhead when there are many partitions. Arrange to postpone creation of these data structures until after we've processed the query enough to identify restriction quals for the partitioned table, and then apply partition pruning before not after creation of each partition's data structures. In this way we need not open the partition relations at all for partitions that the planner has no real interest in. For queries that can be proven at plan time to access only a small number of partitions, this patch improves the practical maximum number of partitions from under 100 to perhaps a few thousand. Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen, Yoshikazu Imai, and David Rowley Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp |
7 years ago |
|
|
fc22b6623b |
Generated columns
This is an SQL-standard feature that allows creating columns that are computed from expressions rather than assigned, similar to a view or materialized view but on a column basis. This implements one kind of generated column: stored (computed on write). Another kind, virtual (computed on read), is planned for the future, and some room is left for it. Reviewed-by: Michael Paquier <michael@paquier.xyz> Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com |
7 years ago |
|
|
2e3da03e9e |
tableam: Add table_get_latest_tid, to wrap heap_get_latest_tid.
This primarily is to allow WHERE CURRENT OF to continue to work as it currently does. It's not clear to me that these semantics make sense for every AM, but it works for the in-core heap, and the out of core zheap. We can refine it further at a later point if necessary. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
8edd0e7946 |
Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't doing anything useful, and can be elided. It does have a purpose during planning though, which is to serve as a buffer between parent and child Var numbering. Therefore we keep it all the way through to setrefs.c, and get rid of it only after fixing references in the plan level(s) above it. This works largely the same as setrefs.c's ancient hack to get rid of no-op SubqueryScan nodes, and can even share some code with that. Note the change to make setrefs.c use apply_tlist_labeling rather than ad-hoc code. This has the effect of propagating the child's resjunk and ressortgroupref labels, which formerly weren't propagated when removing a SubqueryScan. Doing that is demonstrably necessary for the [Merge]Append cases, and seems harmless for SubqueryScan, if only because trivial_subqueryscan is afraid to collapse cases where the resjunk marking differs. (I suspect that restriction could now be removed, though it's unclear that it'd make any new matches possible, since the outer query can't have references to a child resjunk column.) David Rowley, reviewed by Alvaro Herrera and Tomas Vondra Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com |
7 years ago |
|
|
9a8ee1dc65 |
tableam: Add and use table_fetch_row_version().
This is essentially the tableam version of heapam_fetch(), i.e. fetching a tuple identified by a tid, performing visibility checks. Note that this different from table_index_fetch_tuple(), which is for index lookups. It therefore has to handle a tid pointing to an earlier version of a tuple if the AM uses an optimization like heap's HOT. Add comments to that end. This commit removes the stats_relation argument from heap_fetch, as it's been unused for a long time. Author: Andres Freund Reviewed-By: Haribabu Kommi Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
280a408b48 |
Transaction chaining
Add command variants COMMIT AND CHAIN and ROLLBACK AND CHAIN, which start new transactions with the same transaction characteristics as the just finished one, per SQL standard. Support for transaction chaining in PL/pgSQL is also added. This functionality is especially useful when running COMMIT in a loop in PL/pgSQL. Reviewed-by: Fabien COELHO <coelho@cri.ensmp.fr> Discussion: https://www.postgresql.org/message-id/flat/28536681-324b-10dc-ade8-ab46f7645a5a@2ndquadrant.com |
7 years ago |
|
|
5db6df0c01 |
tableam: Add tuple_{insert, delete, update, lock} and use.
This adds new, required, table AM callbacks for insert/delete/update
and lock_tuple. To be able to reasonably use those, the EvalPlanQual
mechanism had to be adapted, moving more logic into the AM.
Previously both delete/update/lock call-sites and the EPQ mechanism had
to have awareness of the specific tuple format to be able to fetch the
latest version of a tuple. Obviously that needs to be abstracted
away. To do so, move the logic that find the latest row version into
the AM. lock_tuple has a new flag argument,
TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last
version, rather than the current one. It'd have been possible to do
so via a separate callback as well, but finding the last version
usually also necessitates locking the newest version, making it
sensible to combine the two. This replaces the previous use of
EvalPlanQualFetch(). Additionally HeapTupleUpdated, which previously
signaled either a concurrent update or delete, is now split into two,
to avoid callers needing AM specific knowledge to differentiate.
The move of finding the latest row version into tuple_lock means that
encountering a row concurrently moved into another partition will now
raise an error about "tuple to be locked" rather than "tuple to be
updated/deleted" - which is accurate, as that always happens when
locking rows. While possible slightly less helpful for users, it seems
like an acceptable trade-off.
As part of this commit HTSU_Result has been renamed to TM_Result, and
its members been expanded to differentiated between updating and
deleting. HeapUpdateFailureData has been renamed to TM_FailureData.
The interface to speculative insertion is changed so nodeModifyTable.c
does not have to set the speculative token itself anymore. Instead
there's a version of tuple_insert, tuple_insert_speculative, that
performs the speculative insertion (without requiring a flag to signal
that fact), and the speculative insertion is either made permanent
with table_complete_speculative(succeeded = true) or aborted with
succeeded = false).
Note that multi_insert is not yet routed through tableam, nor is
COPY. Changing multi_insert requires changes to copy.c that are large
enough to better be done separately.
Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED
VIEW are also only going to be adjusted in a later commit.
Author: Andres Freund and Haribabu Kommi
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |
|
|
5e1963fb76 |
Collations with nondeterministic comparison
This adds a flag "deterministic" to collations. If that is false, such a collation disables various optimizations that assume that strings are equal only if they are byte-wise equal. That then allows use cases such as case-insensitive or accent-insensitive comparisons or handling of strings with different Unicode normal forms. This functionality is only supported with the ICU provider. At least glibc doesn't appear to have any locales that work in a nondeterministic way, so it's not worth supporting this for the libc provider. The term "deterministic comparison" in this context is from Unicode Technical Standard #10 (https://unicode.org/reports/tr10/#Deterministic_Comparison). This patch makes changes in three areas: - CREATE COLLATION DDL changes and system catalog changes to support this new flag. - Many executor nodes and auxiliary code are extended to track collations. Previously, this code would just throw away collation information, because the eventually-called user-defined functions didn't use it since they only cared about equality, which didn't need collation information. - String data type functions that do equality comparisons and hashing are changed to take the (non-)deterministic flag into account. For comparison, this just means skipping various shortcuts and tie breakers that use byte-wise comparison. For hashing, we first need to convert the input string to a canonical "sort key" using the ICU analogue of strxfrm(). Reviewed-by: Daniel Verite <daniel@manitou-mail.org> Reviewed-by: Peter Geoghegan <pg@bowt.ie> Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com |
7 years ago |
|
|
bb16aba50c |
Enable parallel query with SERIALIZABLE isolation.
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used. Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.
An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:
The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.
Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction. In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.
Remove the serializable_okay flag added to CreateParallelContext() by
commit
|
7 years ago |
|
|
8bee36708f |
Remove unused #include
|
7 years ago |
|
|
c6ff0b892c |
Refactor ParamListInfo initialization
There were six copies of identical nontrivial code. Put it into a function. |
7 years ago |
|
|
c2fe139c20 |
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |
|
|
af38498d4c |
Move hash_any prototype from access/hash.h to utils/hashutils.h
... as well as its implementation from backend/access/hash/hashfunc.c to backend/utils/hash/hashfn.c. access/hash is the place for the hash index AM, not really appropriate for generic facilities, which is what hash_any is; having things the old way meant that anything using hash_any had to include the AM's include file, pointlessly polluting its namespace with unrelated, unnecessary cruft. Also move the HTEqual strategy number to access/stratnum.h from access/hash.h. To avoid breaking third-party extension code, add an #include "utils/hashutils.h" to access/hash.h. (An easily removed line by committers who enjoy their asbestos suits to protect them from angry extension authors.) Discussion: https://postgr.es/m/201901251935.ser5e4h6djt2@alvherre.pgsql |
7 years ago |
|
|
898e5e3290 |
Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because otherwise an insert that violates the newly-imposed partition constraint could be in progress at the same time that we're changing that constraint; only the lock level on the parent relation is weakened. To make this safe, we have to cope with (at least) three separate problems. First, relevant DDL might commit while we're in the process of building a PartitionDesc. If so, find_inheritance_children() might see a new partition while the RELOID system cache still has the old partition bound cached, and even before invalidation messages have been queued. To fix that, if we see that the pg_class tuple seems to be missing or to have a null relpartbound, refetch the value directly from the table. We can't get the wrong value, because DETACH PARTITION still requires AccessExclusiveLock throughout; if we ever want to change that, this will need more thought. In testing, I found it quite difficult to hit even the null-relpartbound case; the race condition is extremely tight, but the theoretical risk is there. Second, successive calls to RelationGetPartitionDesc might not return the same answer. The query planner will get confused if lookup up the PartitionDesc for a particular relation does not return a consistent answer for the entire duration of query planning. Likewise, query execution will get confused if the same relation seems to have a different PartitionDesc at different times. Invent a new PartitionDirectory concept and use it to ensure consistency. This ensures that a single invocation of either the planner or the executor sees the same view of the PartitionDesc from beginning to end, but it does not guarantee that the planner and the executor see the same view. Since this allows pointers to old PartitionDesc entries to survive even after a relcache rebuild, also postpone removing the old PartitionDesc entry until we're certain no one is using it. For the most part, it seems to be OK for the planner and executor to have different views of the PartitionDesc, because the executor will just ignore any concurrently added partitions which were unknown at plan time; those partitions won't be part of the inheritance expansion, but invalidation messages will trigger replanning at some point. Normally, this happens by the time the very next command is executed, but if the next command acquires no locks and executes a prepared query, it can manage not to notice until a new transaction is started. We might want to tighten that up, but it's material for a separate patch. There would still be a small window where a query that started just after an ATTACH PARTITION command committed might fail to notice its results -- but only if the command starts before the commit has been acknowledged to the user. All in all, the warts here around serializability seem small enough to be worth accepting for the considerable advantage of being able to add partitions without a full table lock. Although in general the consequences of new partitions showing up between planning and execution are limited to the query not noticing the new partitions, run-time partition pruning will get confused in that case, so that's the third problem that this patch fixes. Run-time partition pruning assumes that indexes into the PartitionDesc are stable between planning and execution. So, add code so that if new partitions are added between plan time and execution time, the indexes stored in the subplan_map[] and subpart_map[] arrays within the plan's PartitionedRelPruneInfo get adjusted accordingly. There does not seem to be a simple way to generalize this scheme to cope with partitions that are removed, mostly because they could then get added back again with different bounds, but it works OK for added partitions. This code does not try to ensure that every backend participating in a parallel query sees the same view of the PartitionDesc. That currently doesn't matter, because we never pass PartitionDesc indexes between backends. Each backend will ignore the concurrently added partitions which it notices, and it doesn't matter if different backends are ignoring different sets of concurrently added partitions. If in the future that matters, for example because we allow writes in parallel query and want all participants to do tuple routing to the same set of partitions, the PartitionDirectory concept could be improved to share PartitionDescs across backends. There is a draft patch to serialize and restore PartitionDescs on the thread where this patch was discussed, which may be a useful place to start. Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs, Amit Langote, and Michael Paquier for discussion, and to Alvaro Herrera for some review. Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com |
7 years ago |
|
|
277cb78983 |
Don't reuse slots between root and partition in ON CONFLICT ... UPDATE.
Until now the the slot to store the conflicting tuple, and the result of the ON CONFLICT SET, where reused between partitions. That necessitated changing slots descriptor when switching partitions. Besides the overhead of switching descriptors on a slot (which requires memory allocations and prevents JITing), that's importantly also problematic for tableam. There individual partitions might belong to different tableams, needing different kinds of slots. In passing also fix ExecOnConflictUpdate to clear the existing slot at exit. Otherwise that slot could continue to hold a pin till the query ends, which could be far too long if the input data set is large, and there's no further conflicts. While previously also problematic, it's now more important as there will be more such slots when partitioned. Author: Andres Freund Reviewed-By: Robert Haas, David Rowley Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
f217761856 |
Fix bug in clearing of virtual tuple slot.
I broke/typoed this in
|
7 years ago |
|
|
80b9e9c466 |
Improve performance of index-only scans with many index columns.
StoreIndexTuple was a loop over index_getattr, which is O(N^2) if the index columns are variable-width, and the performance impact is already quite visible at ten columns. The obvious move is to replace that with a call to index_deform_tuple ... but that's *also* a loop over index_getattr. Improve it to be essentially a clone of heap_deform_tuple. (There are a few other places that loop over all index columns with index_getattr, and perhaps should be changed likewise, but most of them don't seem performance-critical. Anyway, the rest would mostly only be interested in the index key columns, which there aren't likely to be so many of. Wide index tuples are a new thing with INCLUDE.) Konstantin Knizhnik Discussion: https://postgr.es/m/e06b2d27-04fc-5c0e-bb8c-ecd72aa24959@postgrespro.ru |
7 years ago |
|
|
70b9bda65f |
Use a virtual rather than a heap slot in two places where that suffices.
Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
ad0bda5d24 |
Store tuples for EvalPlanQual in slots, rather than as HeapTuples.
For the upcoming pluggable table access methods it's quite inconvenient to store tuples as HeapTuples, as that'd require converting tuples from a their native format into HeapTuples. Instead use slots to manage epq tuples. To fit into that scheme, change the foreign data wrapper callback RefetchForeignRow, to store the tuple in a slot. Insist on using the caller provided slot, so it conveniently can be stored in the corresponding EPQ slot. As there is no in core user of RefetchForeignRow, that change was done blindly, but we plan to test that soon. To avoid duplicating that work for row locks, move row locks to just directly use the EPQ slots - it previously temporarily stored tuples in LockRowsState.lr_curtuples, but that doesn't seem beneficial, given we'd possibly end up with a significant number of additional slots. The behaviour of es_epqTupleSet[rti -1] is now checked by es_epqTupleSlot[rti -1] != NULL, as that is distinguishable from a slot containing an empty tuple. Author: Andres Freund, Haribabu Kommi, Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
253655116b |
Don't superfluously materialize slot after DELETE from an FDW.
Previously that was needed to safely store the table oid, but after
|
7 years ago |
|
|
8f0577386e |
Don't force materializing when copying a buffer tuple table slot.
After
|
7 years ago |
|
|
f414abd62d |
Allow buffer tuple table slots to materialize after ExecStoreVirtualTuple().
While not common, it can be useful to store a virtual tuple into a
buffer tuple table slot, and then materialize that slot. So far we've
asserted out, which surprisingly wasn't a problem for anything in
core. But that seems fragile, and it also breaks redis_fdw after
|
7 years ago |
|
|
c94fb8e8ac |
Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating through several parallel lists, but not everyplace that could reasonably use those was doing so. Also invent forfour() and forfive() macros to do the same for four or five parallel lists, and use those where applicable. The immediate motivation for doing this is to reduce the number of ad-hoc lnext() calls, to reduce the footprint of a WIP patch. However, it seems like good cleanup and error-proofing anyway; the places that were combining forthree() with a manually iterated loop seem particularly illegible and bug-prone. There was some speculation about restructuring related parsetree representations to reduce the need for parallel list chasing of this sort. Perhaps that's a win, or perhaps not, but in any case it would be considerably more invasive than this patch; and it's not particularly related to my immediate goal of improving the List infrastructure. So I'll leave that question for another day. Patch by me; thanks to David Rowley for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us |
7 years ago |
|
|
ff11e7f4b9 |
Use slots in trigger infrastructure, except for the actual invocation.
In preparation for abstracting table storage, convert trigger.c to track tuples in slots. Which also happens to make code calling triggers simpler. As the calling interface for triggers themselves is not changed in this patch, HeapTuples still are extracted from the slot at that time. But that's handled solely inside trigger.c, not visible to callers. It's quite likely that we'll want to revise the external trigger interface, but that's a separate large project. As part of this work the slots used for old/new/return tuples are moved from EState into ResultRelInfo, as different updated tables might need different slots. The slots are now also now created on-demand, which is good both from an efficiency POV, but also makes the modifying code simpler. Author: Andres Freund, Amit Khandekar and Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
b8d71745ea |
Store table oid and tuple's tid in tuple slots directly.
After the introduction of tuple table slots all table AMs need to support returning the table oid of the tuple stored in a slot created by said AM. It does not make sense to re-implement that in every AM, therefore move handling of table OIDs into the TupleTableSlot structure itself. It's possible that we, at a later date, might want to get rid of HeapTupleData.t_tableOid entirely, but doing so before the abstractions for table AMs are integrated turns out to be too hard, so delay that for now. Similarly, every AM needs to support the concept of a tuple identifier (tid / item pointer) for its tuples. It's quite possible that we'll generalize the exact form of a tid at a future point (to allow for things like index organized tables), but for now many parts of the code know about tids, so there's not much point in abstracting tids away. Therefore also move into slot (rather than providing API to set/get the tid associated with the tuple in a slot). Once table AM includes insert/updating/deleting tuples, the responsibility to set the correct tid after such an action will move into that. After that change, code doing such modifications, should not have to deal with HeapTuples directly anymore. Author: Andres Freund, Haribabu Kommi and Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
8aa02b52db |
Add ExecStorePinnedBufferHeapTuple.
This allows to avoid an unnecessary pin/unpin cycle when storing a tuple in an already pinned buffer into a slot, when the pin isn't further needed at the call site. Only a single caller for now (to ensure coverage), but upcoming patches will increase use of the new function. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
1bb5e78218 |
Move code for managing PartitionDescs into a new file, partdesc.c
This is similar in spirit to the existing partbounds.c file in the same directory, except that there's a lot less code in the new file created by this commit. Pending work in this area proposes to add a bunch more code related to PartitionDescs, though, and this will give us a good place to put it. Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com |
7 years ago |
|
|
9eefba181f |
Delay lock acquisition for partitions until we route a tuple to them.
Instead of locking all partitions to which we might route a tuple at executor startup, just lock them as we use them. In some cases such a partition might get locked at executor startup anyway because it appears in the query's range table for some other reason, but in other cases this is a bit savings. This changes the order in which partitions are locked in some cases, which might conceivably create deadlock hazards that don't exist today, but per discussion, it seems like such cases should be rare enough that we can neglect them in favor of improving performance. David Rowley, reviewed and tested by Tomas Vondra, Sho Kato, John Naylor, Tom Lane, and me. Discussion: http://postgr.es/m/CAKJS1f-=FnMqmQP6qitkD+xEddxw22ySLP-0xFk3JAqUX2yfMw@mail.gmail.com |
7 years ago |
|
|
22bc403029 |
Remove line duplicated during conflict resolution.
I included the duplicated ExecTypeFromTL in
|
7 years ago |
|
|
37d9916020 |
More unconstify use
Replace casts whose only purpose is to cast away const with the unconstify() macro. Discussion: https://www.postgresql.org/message-id/flat/53a28052-f9f3-1808-fed9-460fd43035ab%402ndquadrant.com |
7 years ago |
|
|
356687bd82 |
Reset, not recreate, execGrouping.c style hashtables.
This uses the facility added in the preceding commit to fix
performance issues caused by rebuilding the hashtable (with its
comparator expression being the most expensive bit), after every
reset. That's especially important when the comparator is JIT
compiled.
Bug: #15592 #15486
Reported-By: Jakub Janeček, Dmitry Marakasov
Author: Andres Freund
Discussion:
https://postgr.es/m/15486-05850f065da42931@postgresql.org
https://postgr.es/m/20190114180423.ywhdg2iagzvh43we@alap3.anarazel.de
Backpatch: 11, where I broke this in
|
7 years ago |
|
|
317ffdfeaa |
Allow to reset execGrouping.c style tuple hashtables.
This has the advantage that the comparator expression, the table's slot, etc do not have to be rebuilt. Additionally the simplehash.h hashtable within the tuple hashtable now keeps its previous size and doesn't need to be reallocated. That both reduces allocator overhead, and improves performance in cases where the input estimation was off by a significant factor. To avoid an API/ABI break, the new parameter is exposed via the new BuildTupleHashTableExt(), and BuildTupleHashTable() now is a wrapper around the former, that continues to allocate the table itself in the tablecxt. Using this fixes performance issues discovered in the two bugs referenced. This commit however has not converted the callers, that's done in a separate commit. Bug: #15592 #15486 Reported-By: Jakub Janeček, Dmitry Marakasov Author: Andres Freund Discussion: https://postgr.es/m/15486-05850f065da42931@postgresql.org https://postgr.es/m/20190114180423.ywhdg2iagzvh43we@alap3.anarazel.de Backpatch: 11, this is a prerequisite for other fixes |
7 years ago |
|
|
5567d12ce0 |
Plug leak in BuildTupleHashTable by creating ExprContext in correct context.
In |
7 years ago |
|
|
558d77f20e |
Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to introduce a more generic subscription mechanism, which allows subscripting not only arrays but also other object types such as JSONB. That functionality is introduced in a largish invasive patch, out of which this internal renaming patch was extracted. Author: Dmitry Dolgov Reviewed-by: Tom Lane, Arthur Zakirov Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com |
7 years ago |
|
|
fa2cf164aa |
Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it was for. Now that there's also access/relation.h, we have a potential confusion hazard as well, so let's rename it to something more apropos. Per discussion, "pathnodes.h" is reasonable, since a good fraction of the file is Path node definitions. While at it, tweak a couple of other headers that were gratuitously importing relation.h into modules that don't need it. Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us |
7 years ago |
|
|
f09346a9c6 |
Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us |
7 years ago |
|
|
a1b8c41e99 |
Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs. There's nothing planner-specific about them, as evidenced by the number of other places that were using them. While at it, rename and_clause() etc to is_andclause() etc, to clarify that they are node-type-testing functions not node-creation functions. And use "static inline" implementations for the shortest ones. Also, modify flatten_join_alias_vars() and some subsidiary functions to take a Query not a PlannerInfo to define the join structure that Vars should be translated according to. They were only using the "parse" field of the PlannerInfo anyway, so this just requires removing one level of indirection. The advantage is that now parse_agg.c can use flatten_join_alias_vars() without the horrid kluge of creating an incomplete PlannerInfo, which will allow that file to be decoupled from relation.h in a subsequent patch. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us |
7 years ago |
|
|
4be058fe9e |
In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us |
7 years ago |
|
|
a9c35cf85c |
Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for V1 function calls are stored in, always had space for FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two arrays. For nearly every function call 100 arguments is far more than needed, therefore wasting memory. Arg and argnull being two separate arrays also guarantees that to access a single argument, two cachelines have to be touched. Change the layout so there's a single variable-length array with pairs of value / isnull. That drastically reduces memory consumption for most function calls (on x86-64 a two argument function now uses 64bytes, previously 936 bytes), and makes it very likely that argument value and its nullness are on the same cacheline. Arguments are stored in a new NullableDatum struct, which, due to padding, needs more memory per argument than before. But as usually far fewer arguments are stored, and individual arguments are cheaper to access, that's still a clear win. It's likely that there's other places where conversion to NullableDatum arrays would make sense, e.g. TupleTableSlots, but that's for another commit. Because the function call information is now variable-length allocations have to take the number of arguments into account. For heap allocations that can be done with SizeForFunctionCallInfoData(), for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro that helps to allocate an appropriately sized and aligned variable. Some places with stack allocation function call information don't know the number of arguments at compile time, and currently variably sized stack allocations aren't allowed in postgres. Therefore allow for FUNC_MAX_ARGS space in these cases. They're not that common, so for now that seems acceptable. Because of the need to allocate FunctionCallInfo of the appropriate size, older extensions may need to update their code. To avoid subtle breakages, the FunctionCallInfoData struct has been renamed to FunctionCallInfoBaseData. Most code only references FunctionCallInfo, so that shouldn't cause much collateral damage. This change is also a prerequisite for more efficient expression JIT compilation (by allocating the function call information on the stack, allowing LLVM to optimize it away); previously the size of the call information caused problems inside LLVM's optimizer. Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de |
7 years ago |
|
|
95931133a9 |
Fix misc typos in comments.
Spotted mostly by Fabien Coelho. Discussion: https://www.postgresql.org/message-id/alpine.DEB.2.21.1901230947050.16643@lancre |
7 years ago |
|
|
346ed70b0a |
Rename RelationData.rd_amroutine to rd_indam.
The upcoming table AM support makes rd_amroutine to generic, as its only about index AMs. The new name makes that clear, and is shorter to boot. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
c91560defc |
Move remaining code from tqual.[ch] to heapam.h / heapam_visibility.c.
Given these routines are heap specific, and that there will be more generic visibility support in via table AM, it makes sense to move the prototypes to heapam.h (routines like HeapTupleSatisfiesVacuum will not be exposed in a generic fashion, because they are too storage specific). Similarly, the code in tqual.c is specific to heap, so moving it into access/heap/ makes sense. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
b7eda3e0e3 |
Move generic snapshot related code from tqual.h to snapmgr.h.
The code in tqual.c is largely heap specific. Due to the upcoming pluggable storage work, it therefore makes sense to move it into access/heap/ (as the file's header notes, the tqual name isn't very good). But the various statically allocated snapshot and snapshot initialization functions are now (see previous commit) generic and do not depend on functions declared in tqual.h anymore. Therefore move. Also move XidInMVCCSnapshot as that's useful for future AMs, and already used outside of tqual.c. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
e7cc78ad43 |
Remove superfluous tqual.h includes.
Most of these had been obsoleted by
|
7 years ago |
|
|
e0c4ec0728 |
Replace uses of heap_open et al with the corresponding table_* function.
Author: Andres Freund Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de |
7 years ago |
|
|
111944c5ee |
Replace heapam.h includes with {table, relation}.h where applicable.
A lot of files only included heapam.h for relation_open, heap_open etc - replace the heapam.h include in those files with the narrower header. Author: Andres Freund Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de |
7 years ago |
|
|
3bed67bed1 |
Fix outdated comment
The issue the comment is referring to was fixed by
|
7 years ago |
|
|
148e632c05 |
Fix parent of WCO qual.
The parent of some WCO expressions was, apparently by accident, set to the the source of DML queries, rather than the target table. This causes problems for the upcoming pluggable storage work, because the target and source table might be of different storage types. It's possible that this is already problematic, but neither experimenting nor inquiries on -hackers have found them. So don't backpatch for now. Author: Andres Freund Discussion: https://postgr.es/m/20181205225213.hiwa3kgoxeybqcqv@alap3.anarazel.de |
7 years ago |
|
|
0944ec54de |
Don't include genam.h from execnodes.h and relscan.h anymore.
This is the genam.h equivalent of |
7 years ago |
|
|
4c850ecec6 |
Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used headers (e.g. execnodes.h, indirectly in executor.h, ...). That's problematic on its own, as heapam.h contains a lot of low-level details that don't need to be exposed that widely, but becomes more problematic with the upcoming introduction of pluggable table storage - it seems inappropriate for heapam.h to be included that widely afterwards. heapam.h was largely only included in other headers to get the HeapScanDesc typedef (which was defined in heapam.h, even though HeapScanDescData is defined in relscan.h). The better solution here seems to be to just use the underlying struct (forward declared where necessary). Similar for BulkInsertState. Another problem was that LockTupleMode was used in executor.h - parts of the file tried to cope without heapam.h, but due to the fact that it indirectly included it, several subsequent violations of that goal were not not noticed. We could just reuse the approach of declaring parameters as int, but it seems nicer to move LockTupleMode to lockoptions.h - that's not a perfect location, but also doesn't seem bad. As a number of files relied on implicitly included heapam.h, a significant number of files grew an explicit include. It's quite probably that a few external projects will need to do the same. Author: Andres Freund Reviewed-By: Alvaro Herrera Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de |
7 years ago |