mirror of https://github.com/postgres/postgres
Tag:
Branch:
Tree:
67b9b3ca32
REL2_0B
REL6_4
REL6_5_PATCHES
REL7_0_PATCHES
REL7_1_STABLE
REL7_2_STABLE
REL7_3_STABLE
REL7_4_STABLE
REL8_0_STABLE
REL8_1_STABLE
REL8_2_STABLE
REL8_3_STABLE
REL8_4_STABLE
REL8_5_ALPHA1_BRANCH
REL8_5_ALPHA2_BRANCH
REL8_5_ALPHA3_BRANCH
REL9_0_ALPHA4_BRANCH
REL9_0_ALPHA5_BRANCH
REL9_0_STABLE
REL9_1_STABLE
REL9_2_STABLE
REL9_3_STABLE
REL9_4_STABLE
REL9_5_STABLE
REL9_6_STABLE
REL_10_STABLE
REL_11_STABLE
REL_12_STABLE
REL_13_STABLE
REL_14_STABLE
REL_15_STABLE
REL_16_STABLE
REL_17_STABLE
REL_18_STABLE
Release_1_0_3
WIN32_DEV
ecpg_big_bison
master
PG95-1_01
PG95-1_08
PG95-1_09
REL2_0
REL6_1
REL6_1_1
REL6_2
REL6_2_1
REL6_3
REL6_3_2
REL6_4_2
REL6_5
REL6_5_1
REL6_5_2
REL6_5_3
REL7_0
REL7_0_2
REL7_0_3
REL7_1
REL7_1_1
REL7_1_2
REL7_1_3
REL7_1_BETA
REL7_1_BETA2
REL7_1_BETA3
REL7_2
REL7_2_1
REL7_2_2
REL7_2_3
REL7_2_4
REL7_2_5
REL7_2_6
REL7_2_7
REL7_2_8
REL7_2_BETA1
REL7_2_BETA2
REL7_2_BETA3
REL7_2_BETA4
REL7_2_BETA5
REL7_2_RC1
REL7_2_RC2
REL7_3
REL7_3_1
REL7_3_10
REL7_3_11
REL7_3_12
REL7_3_13
REL7_3_14
REL7_3_15
REL7_3_16
REL7_3_17
REL7_3_18
REL7_3_19
REL7_3_2
REL7_3_20
REL7_3_21
REL7_3_3
REL7_3_4
REL7_3_5
REL7_3_6
REL7_3_7
REL7_3_8
REL7_3_9
REL7_4
REL7_4_1
REL7_4_10
REL7_4_11
REL7_4_12
REL7_4_13
REL7_4_14
REL7_4_15
REL7_4_16
REL7_4_17
REL7_4_18
REL7_4_19
REL7_4_2
REL7_4_20
REL7_4_21
REL7_4_22
REL7_4_23
REL7_4_24
REL7_4_25
REL7_4_26
REL7_4_27
REL7_4_28
REL7_4_29
REL7_4_3
REL7_4_30
REL7_4_4
REL7_4_5
REL7_4_6
REL7_4_7
REL7_4_8
REL7_4_9
REL7_4_BETA1
REL7_4_BETA2
REL7_4_BETA3
REL7_4_BETA4
REL7_4_BETA5
REL7_4_RC1
REL7_4_RC2
REL8_0_0
REL8_0_0BETA1
REL8_0_0BETA2
REL8_0_0BETA3
REL8_0_0BETA4
REL8_0_0BETA5
REL8_0_0RC1
REL8_0_0RC2
REL8_0_0RC3
REL8_0_0RC4
REL8_0_0RC5
REL8_0_1
REL8_0_10
REL8_0_11
REL8_0_12
REL8_0_13
REL8_0_14
REL8_0_15
REL8_0_16
REL8_0_17
REL8_0_18
REL8_0_19
REL8_0_2
REL8_0_20
REL8_0_21
REL8_0_22
REL8_0_23
REL8_0_24
REL8_0_25
REL8_0_26
REL8_0_3
REL8_0_4
REL8_0_5
REL8_0_6
REL8_0_7
REL8_0_8
REL8_0_9
REL8_1_0
REL8_1_0BETA1
REL8_1_0BETA2
REL8_1_0BETA3
REL8_1_0BETA4
REL8_1_0RC1
REL8_1_1
REL8_1_10
REL8_1_11
REL8_1_12
REL8_1_13
REL8_1_14
REL8_1_15
REL8_1_16
REL8_1_17
REL8_1_18
REL8_1_19
REL8_1_2
REL8_1_20
REL8_1_21
REL8_1_22
REL8_1_23
REL8_1_3
REL8_1_4
REL8_1_5
REL8_1_6
REL8_1_7
REL8_1_8
REL8_1_9
REL8_2_0
REL8_2_1
REL8_2_10
REL8_2_11
REL8_2_12
REL8_2_13
REL8_2_14
REL8_2_15
REL8_2_16
REL8_2_17
REL8_2_18
REL8_2_19
REL8_2_2
REL8_2_20
REL8_2_21
REL8_2_22
REL8_2_23
REL8_2_3
REL8_2_4
REL8_2_5
REL8_2_6
REL8_2_7
REL8_2_8
REL8_2_9
REL8_2_BETA1
REL8_2_BETA2
REL8_2_BETA3
REL8_2_RC1
REL8_3_0
REL8_3_1
REL8_3_10
REL8_3_11
REL8_3_12
REL8_3_13
REL8_3_14
REL8_3_15
REL8_3_16
REL8_3_17
REL8_3_18
REL8_3_19
REL8_3_2
REL8_3_20
REL8_3_21
REL8_3_22
REL8_3_23
REL8_3_3
REL8_3_4
REL8_3_5
REL8_3_6
REL8_3_7
REL8_3_8
REL8_3_9
REL8_3_BETA1
REL8_3_BETA2
REL8_3_BETA3
REL8_3_BETA4
REL8_3_RC1
REL8_3_RC2
REL8_4_0
REL8_4_1
REL8_4_10
REL8_4_11
REL8_4_12
REL8_4_13
REL8_4_14
REL8_4_15
REL8_4_16
REL8_4_17
REL8_4_18
REL8_4_19
REL8_4_2
REL8_4_20
REL8_4_21
REL8_4_22
REL8_4_3
REL8_4_4
REL8_4_5
REL8_4_6
REL8_4_7
REL8_4_8
REL8_4_9
REL8_4_BETA1
REL8_4_BETA2
REL8_4_RC1
REL8_4_RC2
REL8_5_ALPHA1
REL8_5_ALPHA2
REL8_5_ALPHA3
REL9_0_0
REL9_0_1
REL9_0_10
REL9_0_11
REL9_0_12
REL9_0_13
REL9_0_14
REL9_0_15
REL9_0_16
REL9_0_17
REL9_0_18
REL9_0_19
REL9_0_2
REL9_0_20
REL9_0_21
REL9_0_22
REL9_0_23
REL9_0_3
REL9_0_4
REL9_0_5
REL9_0_6
REL9_0_7
REL9_0_8
REL9_0_9
REL9_0_ALPHA4
REL9_0_ALPHA5
REL9_0_BETA1
REL9_0_BETA2
REL9_0_BETA3
REL9_0_BETA4
REL9_0_RC1
REL9_1_0
REL9_1_1
REL9_1_10
REL9_1_11
REL9_1_12
REL9_1_13
REL9_1_14
REL9_1_15
REL9_1_16
REL9_1_17
REL9_1_18
REL9_1_19
REL9_1_2
REL9_1_20
REL9_1_21
REL9_1_22
REL9_1_23
REL9_1_24
REL9_1_3
REL9_1_4
REL9_1_5
REL9_1_6
REL9_1_7
REL9_1_8
REL9_1_9
REL9_1_ALPHA1
REL9_1_ALPHA2
REL9_1_ALPHA3
REL9_1_ALPHA4
REL9_1_ALPHA5
REL9_1_BETA1
REL9_1_BETA2
REL9_1_BETA3
REL9_1_RC1
REL9_2_0
REL9_2_1
REL9_2_10
REL9_2_11
REL9_2_12
REL9_2_13
REL9_2_14
REL9_2_15
REL9_2_16
REL9_2_17
REL9_2_18
REL9_2_19
REL9_2_2
REL9_2_20
REL9_2_21
REL9_2_22
REL9_2_23
REL9_2_24
REL9_2_3
REL9_2_4
REL9_2_5
REL9_2_6
REL9_2_7
REL9_2_8
REL9_2_9
REL9_2_BETA1
REL9_2_BETA2
REL9_2_BETA3
REL9_2_BETA4
REL9_2_RC1
REL9_3_0
REL9_3_1
REL9_3_10
REL9_3_11
REL9_3_12
REL9_3_13
REL9_3_14
REL9_3_15
REL9_3_16
REL9_3_17
REL9_3_18
REL9_3_19
REL9_3_2
REL9_3_20
REL9_3_21
REL9_3_22
REL9_3_23
REL9_3_24
REL9_3_25
REL9_3_3
REL9_3_4
REL9_3_5
REL9_3_6
REL9_3_7
REL9_3_8
REL9_3_9
REL9_3_BETA1
REL9_3_BETA2
REL9_3_RC1
REL9_4_0
REL9_4_1
REL9_4_10
REL9_4_11
REL9_4_12
REL9_4_13
REL9_4_14
REL9_4_15
REL9_4_16
REL9_4_17
REL9_4_18
REL9_4_19
REL9_4_2
REL9_4_20
REL9_4_21
REL9_4_22
REL9_4_23
REL9_4_24
REL9_4_25
REL9_4_26
REL9_4_3
REL9_4_4
REL9_4_5
REL9_4_6
REL9_4_7
REL9_4_8
REL9_4_9
REL9_4_BETA1
REL9_4_BETA2
REL9_4_BETA3
REL9_4_RC1
REL9_5_0
REL9_5_1
REL9_5_10
REL9_5_11
REL9_5_12
REL9_5_13
REL9_5_14
REL9_5_15
REL9_5_16
REL9_5_17
REL9_5_18
REL9_5_19
REL9_5_2
REL9_5_20
REL9_5_21
REL9_5_22
REL9_5_23
REL9_5_24
REL9_5_25
REL9_5_3
REL9_5_4
REL9_5_5
REL9_5_6
REL9_5_7
REL9_5_8
REL9_5_9
REL9_5_ALPHA1
REL9_5_ALPHA2
REL9_5_BETA1
REL9_5_BETA2
REL9_5_RC1
REL9_6_0
REL9_6_1
REL9_6_10
REL9_6_11
REL9_6_12
REL9_6_13
REL9_6_14
REL9_6_15
REL9_6_16
REL9_6_17
REL9_6_18
REL9_6_19
REL9_6_2
REL9_6_20
REL9_6_21
REL9_6_22
REL9_6_23
REL9_6_24
REL9_6_3
REL9_6_4
REL9_6_5
REL9_6_6
REL9_6_7
REL9_6_8
REL9_6_9
REL9_6_BETA1
REL9_6_BETA2
REL9_6_BETA3
REL9_6_BETA4
REL9_6_RC1
REL_10_0
REL_10_1
REL_10_10
REL_10_11
REL_10_12
REL_10_13
REL_10_14
REL_10_15
REL_10_16
REL_10_17
REL_10_18
REL_10_19
REL_10_2
REL_10_20
REL_10_21
REL_10_22
REL_10_23
REL_10_3
REL_10_4
REL_10_5
REL_10_6
REL_10_7
REL_10_8
REL_10_9
REL_10_BETA1
REL_10_BETA2
REL_10_BETA3
REL_10_BETA4
REL_10_RC1
REL_11_0
REL_11_1
REL_11_10
REL_11_11
REL_11_12
REL_11_13
REL_11_14
REL_11_15
REL_11_16
REL_11_17
REL_11_18
REL_11_19
REL_11_2
REL_11_20
REL_11_21
REL_11_22
REL_11_3
REL_11_4
REL_11_5
REL_11_6
REL_11_7
REL_11_8
REL_11_9
REL_11_BETA1
REL_11_BETA2
REL_11_BETA3
REL_11_BETA4
REL_11_RC1
REL_12_0
REL_12_1
REL_12_10
REL_12_11
REL_12_12
REL_12_13
REL_12_14
REL_12_15
REL_12_16
REL_12_17
REL_12_18
REL_12_19
REL_12_2
REL_12_20
REL_12_21
REL_12_22
REL_12_3
REL_12_4
REL_12_5
REL_12_6
REL_12_7
REL_12_8
REL_12_9
REL_12_BETA1
REL_12_BETA2
REL_12_BETA3
REL_12_BETA4
REL_12_RC1
REL_13_0
REL_13_1
REL_13_10
REL_13_11
REL_13_12
REL_13_13
REL_13_14
REL_13_15
REL_13_16
REL_13_17
REL_13_18
REL_13_19
REL_13_2
REL_13_20
REL_13_21
REL_13_22
REL_13_23
REL_13_3
REL_13_4
REL_13_5
REL_13_6
REL_13_7
REL_13_8
REL_13_9
REL_13_BETA1
REL_13_BETA2
REL_13_BETA3
REL_13_RC1
REL_14_0
REL_14_1
REL_14_10
REL_14_11
REL_14_12
REL_14_13
REL_14_14
REL_14_15
REL_14_16
REL_14_17
REL_14_18
REL_14_19
REL_14_2
REL_14_20
REL_14_3
REL_14_4
REL_14_5
REL_14_6
REL_14_7
REL_14_8
REL_14_9
REL_14_BETA1
REL_14_BETA2
REL_14_BETA3
REL_14_RC1
REL_15_0
REL_15_1
REL_15_10
REL_15_11
REL_15_12
REL_15_13
REL_15_14
REL_15_15
REL_15_2
REL_15_3
REL_15_4
REL_15_5
REL_15_6
REL_15_7
REL_15_8
REL_15_9
REL_15_BETA1
REL_15_BETA2
REL_15_BETA3
REL_15_BETA4
REL_15_RC1
REL_15_RC2
REL_16_0
REL_16_1
REL_16_10
REL_16_11
REL_16_2
REL_16_3
REL_16_4
REL_16_5
REL_16_6
REL_16_7
REL_16_8
REL_16_9
REL_16_BETA1
REL_16_BETA2
REL_16_BETA3
REL_16_RC1
REL_17_0
REL_17_1
REL_17_2
REL_17_3
REL_17_4
REL_17_5
REL_17_6
REL_17_7
REL_17_BETA1
REL_17_BETA2
REL_17_BETA3
REL_17_RC1
REL_18_0
REL_18_1
REL_18_BETA1
REL_18_BETA2
REL_18_BETA3
REL_18_RC1
Release_1_0_2
Release_2_0
Release_2_0_0
release-6-3
${ noResults }
1984 Commits (67b9b3ca328392f9afc4e66fe03564f5fc87feff)
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
f5825853e3 |
Pass QueryEnvironment down to EvalPlanQual's EState.
Otherwise the executor can't see trigger transition tables during EPQ evaluation. Fixes bug #15900 and almost certainly also #15720. Back-patch to 10, where trigger transition tables landed. Author: Alex Aktsipetrov Reviewed-by: Thomas Munro, Tom Lane Discussion: https://postgr.es/m/15900-bc482754fe8d7415%40postgresql.org Discussion: https://postgr.es/m/15720-38c2b29e5d720187%40postgresql.org |
7 years ago |
|
|
6b8548964b |
Fix inconsistencies in the code
This addresses a couple of issues in the code: - Typos and inconsistencies in comments and function declarations. - Removal of unreferenced function declarations. - Removal of unnecessary compile flags. - A cleanup error in regressplans.sh. Author: Alexander Lakhin Discussion: https://postgr.es/m/0c991fdf-2670-1997-c027-772a420c4604@gmail.com |
7 years ago |
|
|
9e1c9f9594 |
pgindent run prior to branching v12.
pgperltidy and reformat-dat-files too, though the latter didn't find anything to change. |
7 years ago |
|
|
c74d49d41c |
Fix many typos and inconsistencies
Author: Alexander Lakhin Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com |
7 years ago |
|
|
74b7cc8c02 |
Fix misleading comment in nodeIndexonlyscan.c.
The stated reason for acquiring predicate locks on heap pages hasn't
existed since commit
|
7 years ago |
|
|
3412030205 |
Fix more typos and inconsistencies in the tree
Author: Alexander Lakhin Discussion: https://postgr.es/m/0a5419ea-1452-a4e6-72ff-545b1a5a8076@gmail.com |
7 years ago |
|
|
92c4abc736 |
Fix assorted inconsistencies.
There were a number of issues in the recent commits which include typos, code and comments mismatch, leftover function declarations. Fix them. Reported-by: Alexander Lakhin Author: Alexander Lakhin, Amit Kapila and Amit Langote Reviewed-by: Amit Kapila Discussion: https://postgr.es/m/ef0c0232-0c1d-3a35-63d4-0ebd06e31387@gmail.com |
7 years ago |
|
|
d8261595bc |
Fix inconsistency in comments atop ExecParallelEstimate.
When this code was initially introduced in commit |
7 years ago |
|
|
cd96389d71 |
Fix confusion on different kinds of slots in IndexOnlyScans.
We used the same slot to store a tuple from the index, and to store a tuple from the table. That's not OK. It worked with the heap, because heapam_getnextslot() stores a HeapTuple to the slot, and doesn't care how large the tts_values/nulls arrays are. But when I played with a toy table AM implementation that used a virtual tuple, it caused memory overruns. In the passing, tidy up comments on the ioss_PscanLen fields. |
7 years ago |
|
|
56b3b38382 |
Fix incorrect index behavior in COPY FROM with partitioned tables
|
7 years ago |
|
|
9679345f3c |
Fix typos.
Reported-by: Alexander Lakhin Author: Alexander Lakhin Reviewed-by: Amit Kapila and Tom Lane Discussion: https://postgr.es/m/7208de98-add8-8537-91c0-f8b089e2928c@gmail.com |
7 years ago |
|
|
7988cb446d |
Fix typos.
Reviewed-by: Michael Paquier Discussion: https://postgr.es/m/CA%2BhUKGJFWXmtYo6Frd77RR8YXCHz7hJ2mRy5aHV%3D7fJOqDnBHA%40mail.gmail.com |
7 years ago |
|
|
73b8c3bd28 |
tableam: Rename wrapper functions to match callback names.
Some of the wrapper functions didn't match the callback names. Many of them due to staying "consistent" with historic naming of the wrapped functionality. We decided that for most cases it's more important to be for tableam to be consistent going forward, than with the past. The one exception is beginscan/endscan/... because it'd have looked odd to have systable_beginscan/endscan/... with a different naming scheme, and changing the systable_* APIs would have caused way too much churn (including breaking a lot of external users). Author: Ashwin Agrawal, with some small additions by Andres Freund Reviewed-By: Andres Freund Discussion: https://postgr.es/m/CALfoeiugyrXZfX7n0ORCa4L-m834dzmaE8eFdbNR6PMpetU4Ww@mail.gmail.com |
7 years ago |
|
|
44e95b5728 |
Fix array size allocation for HashAggregate hash keys.
When there were duplicate columns in the hash key list, the array
sizes could be miscomputed, resulting in access off the end of the
array. Adjust the computation to ensure the array is always large
enough.
(I considered whether the duplicates could be removed in planning, but
I can't rule out the possibility that duplicate columns might have
different hash functions assigned. Simpler to just make sure it works
at execution time regardless.)
Bug apparently introduced in
|
7 years ago |
|
|
8255c7a5ee |
Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com |
7 years ago |
|
|
be76af171c |
Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent. I thought it would be good to commit this separately, so as to document the differences between 2.0 and 2.1 behavior. Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us |
7 years ago |
|
|
66a4bad83a |
Convert ExecComputeStoredGenerated to use tuple slots
This code was still using the old style of forming a heap tuple rather than using tuple slots. This would be less efficient if a non-heap access method was used. And using tuple slots is actually quite a bit faster when using heap as well. Also add some test cases for generated columns with null values and with varlena values. This lack of coverage was discovered while working on this patch. Discussion: https://www.postgresql.org/message-id/flat/20190331025744.ugbsyks7czfcoksd%40alap3.anarazel.de |
7 years ago |
|
|
2657283256 |
Minimally fix partial aggregation for aggregates that don't have one argument.
For partial aggregation combine steps, AggStatePerTrans->numTransInputs was set to the transition function's number of inputs, rather than the combine function's number of inputs (always 1). That lead to partial aggregates with strict combine functions to wrongly check for NOT NULL input as required by strictness. When the aggregate wasn't exactly passed one argument, the strictness check was either omitted (in the 0 args case) or too many arguments were checked. In the latter case we'd read beyond the end of FunctionCallInfoData->args (only in master). AggStatePerTrans->numTransInputs actually has been wrong since since 9.6, where partial aggregates were added. But it turns out to not be an active problem in 9.6 and 10, because numTransInputs wasn't used at all for combine functions: Before |
7 years ago |
|
|
147e3722f7 |
tableam: Avoid relying on relation size to determine validity of tids.
Instead add a tableam callback to do so. To avoid adding per validation overhead, pass a scan to tuple_tid_valid. In heap's case we'd otherwise incurred a RelationGetNumberOfBlocks() call for each tid - which'd have added noticable overhead to nodeTidscan.c. Author: Andres Freund Reviewed-By: Ashwin Agrawal Discussion: https://postgr.es/m/20190515185447.gno2jtqxyktylyvs@alap3.anarazel.de |
7 years ago |
|
|
6630ccad7a |
Restructure creation of run-time pruning steps.
Previously, gen_partprune_steps() always built executor pruning steps using all suitable clauses, including those containing PARAM_EXEC Params. This meant that the pruning steps were only completely safe for executor run-time (scan start) pruning. To prune at executor startup, we had to ignore the steps involving exec Params. But this doesn't really work in general, since there may be logic changes needed as well --- for example, pruning according to the last operator's btree strategy is the wrong thing if we're not applying that operator. The rules embodied in gen_partprune_steps() and its minions are sufficiently complicated that tracking their incremental effects in other logic seems quite impractical. Short of a complete redesign, the only safe fix seems to be to run gen_partprune_steps() twice, once to create executor startup pruning steps and then again for run-time pruning steps. We can save a few cycles however by noting during the first scan whether we rejected any clauses because they involved exec Params --- if not, we don't need to do the second scan. In support of this, refactor the internal APIs in partprune.c to make more use of passing information in the GeneratePruningStepsContext struct, rather than as separate arguments. This is, I hope, the last piece of our response to a bug report from Alan Jackson. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com |
7 years ago |
|
|
aa4b8c61d2 |
Handle table_complete_speculative's succeeded argument as documented.
For some reason both callsite and the implementation for heapam had the meaning inverted (i.e. succeeded == true was passed in case of conflict). That's confusing. I (Andres) briefly pondered whether it'd be better to rename table_complete_speculative's argument to 'bool specConflict' or such, but decided not to. The 'complete' in the function name for me makes `succeeded` sound a bit better. Reported-By: Ashwin Agrawal, Melanie Plageman, Heikki Linnakangas Discussion: https://postgr.es/m/CALfoeitk7-TACwYv3hCw45FNPjkA86RfXg4iQ5kAOPhR+F1Y4w@mail.gmail.com https://postgr.es/m/97673451-339f-b21e-a781-998d06b1067c@iki.fi |
7 years ago |
|
|
7e19929ea2 |
Fix duplicated words in comments
Author: Stephen Amell Discussion: https://postgr.es/m/539fa271-21b3-777e-a468-d96cffe9c768@gmail.com |
7 years ago |
|
|
b8b94ea129 |
Fix slot type issue for fuzzy distance index scan over out-of-core table AM.
For amcanreorderby scans the nodeIndexscan.c's reorder queue holds
heap tuples, but the underlying table likely does not. Before this fix
we'd return different types of slots, depending on whether the tuple
came from the reorder queue, or from the index + table.
While that could be fixed by signalling that the node doesn't return a
fixed type of slot, it seems better to instead remove the separate
slot for the reorder queue, and use ExecForceStoreHeapTuple() to store
tuples from the queue. It's not particularly common to need
reordering, after all.
This reverts most of the iss_ReorderQueueSlot related changes to
nodeIndexscan.c made in
|
7 years ago |
|
|
88e6ad3054 |
Fix two memory leaks around force-storing tuples in slots.
As reported by Tom, when ExecStoreMinimalTuple() had to perform a conversion to store the minimal tuple in the slot, it forgot to respect the shouldFree flag, and leaked the tuple into the current memory context if true. Fix that by freeing the tuple in that case. Looking at the relevant code made me (Andres) realize that not having the shouldFree parameter to ExecForceStoreHeapTuple() was a bad idea. Some callers had to locally implement the necessary logic, and in one case it was missing, creating a potential per-group leak in non-hashed aggregation. The choice to not free the tuple in ExecComputeStoredGenerated() is not pretty, but not introduced by this commit - I'll start a separate discussion about it. Reported-By: Tom Lane Discussion: https://postgr.es/m/366.1555382816@sss.pgh.pa.us |
7 years ago |
|
|
4d5840cea9 |
Fix problems with auto-held portals.
HoldPinnedPortals() did things in the wrong order: it must not mark a portal autoHeld until it's been successfully held. Otherwise, a failure while persisting the portal results in a server crash because we think the portal is in a good state when it's not. Also add a check that portal->status is READY before attempting to hold a pinned portal. We have such a check before the only other use of HoldPortal(), so it seems unwise not to check it here. Lastly, rethink the responsibility for where to call HoldPinnedPortals. The comment for it imagined that it was optional for any individual PL to call it or not, but that cannot be the case: if some outer level of procedure has a pinned portal, failing to persist it when an inner procedure commits is going to be trouble. Let's have SPI do it instead of the individual PLs. That's not a complete solution, since in theory a PL might not be using SPI to perform commit/rollback, but such a PL is going to have to be aware of lots of related requirements anyway. (This change doesn't cause an API break for any external PLs that might be calling HoldPinnedPortals per the old regime, because calling it twice during a commit or rollback sequence won't hurt.) Per bug #15703 from Julian Schauder. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/15703-c12c5bc0ea34ba26@postgresql.org |
7 years ago |
|
|
3a45321a49 |
Fix thinko in ExecCleanupTupleRouting().
Commit
|
7 years ago |
|
|
255044889d |
Fix typos.
|
7 years ago |
|
|
a8cb8f1246 |
Fix EvalPlanQualStart to handle partitioned result rels correctly.
The es_root_result_relations array needs to be shallow-copied in the same way as the main es_result_relations array, else EPQ rechecks on partitioned result relations fail, as seen in bug #15677 from Norbert Benkocs. Amit Langote, isolation test case added by me Discussion: https://postgr.es/m/15677-0bf089579b4cd02d@postgresql.org Discussion: https://postgr.es/m/19321.1554567786@sss.pgh.pa.us |
7 years ago |
|
|
41f5e04aec |
Fix a number of issues around modifying a previously updated row.
This commit fixes three, unfortunately related, issues: 1) Since |
7 years ago |
|
|
959d00e9db |
Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com |
7 years ago |
|
|
86b85044e8 |
tableam: Add table_multi_insert() and revamp/speed-up COPY FROM buffering.
This adds table_multi_insert(), and converts COPY FROM, the only user
of heap_multi_insert, to it.
A simple conversion of COPY FROM use slots would have yielded a
slowdown when inserting into a partitioned table for some
workloads. Different partitions might need different slots (both slot
types and their descriptors), and dropping / creating slots when
there's constant partition changes is measurable.
Thus instead revamp the COPY FROM buffering for partitioned tables to
allow to buffer inserts into multiple tables, flushing only when
limits are reached across all partition buffers. By only dropping
slots when there've been inserts into too many different partitions,
the aforementioned overhead is gone. By allowing larger batches, even
when there are frequent partition changes, we actuall speed such cases
up significantly.
By using slots COPY of very narrow rows into unlogged / temporary
might slow down very slightly (due to the indirect function calls).
Author: David Rowley, Andres Freund, Haribabu Kommi
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20190327054923.t3epfuewxfqdt22e@alap3.anarazel.de
|
7 years ago |
|
|
9c703c169a |
Make queries' locking of indexes more consistent.
The assertions added by commit
|
7 years ago |
|
|
bfbcad478f |
tableam: bitmap table scan.
This moves bitmap heap scan support to below an optional tableam callback. It's optional as the whole concept of bitmap heapscans is fairly block specific. This basically moves the work previously done in bitgetpage() into the new scan_bitmap_next_block callback, and the direct poking into the buffer done in BitmapHeapNext() into the new scan_bitmap_next_tuple() callback. The abstraction is currently somewhat leaky because nodeBitmapHeapscan.c's prefetching and visibilitymap based logic remains - it's likely that we'll later have to move more into the AM. But it's not trivial to do so without introducing a significant amount of code duplication between the AMs, so that's a project for later. Note that now nodeBitmapHeapscan.c and the associated node types are a bit misnamed. But it's not clear whether renaming wouldn't be a cure worse than the disease. Either way, that'd be best done in a separate commit. Author: Andres Freund Reviewed-By: Robert Haas (in an older version) Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
73c954d248 |
tableam: sample scan.
This moves sample scan support to below tableam. It's not optional as there is, in contrast to e.g. bitmap heap scans, no alternative way to perform tablesample queries. If an AM can't deal with the block based API, it will have to throw an ERROR. The tableam callbacks for this are block based, but given the current TsmRoutine interface, that seems to be required. The new interface doesn't require TsmRoutines to perform visibility checks anymore - that requires the TsmRoutine to know details about the AM, which we want to avoid. To continue to allow taking the returned number of tuples account SampleScanState now has a donetuples field (which previously e.g. existed in SystemRowsSamplerData), which is only incremented after the visibility check succeeds. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
428b260f87 |
Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs for every partition of a partitioned table, even though many of them might later be deemed uninteresting thanks to partition pruning logic. This incurred significant overhead when there are many partitions. Arrange to postpone creation of these data structures until after we've processed the query enough to identify restriction quals for the partitioned table, and then apply partition pruning before not after creation of each partition's data structures. In this way we need not open the partition relations at all for partitions that the planner has no real interest in. For queries that can be proven at plan time to access only a small number of partitions, this patch improves the practical maximum number of partitions from under 100 to perhaps a few thousand. Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen, Yoshikazu Imai, and David Rowley Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp |
7 years ago |
|
|
fc22b6623b |
Generated columns
This is an SQL-standard feature that allows creating columns that are computed from expressions rather than assigned, similar to a view or materialized view but on a column basis. This implements one kind of generated column: stored (computed on write). Another kind, virtual (computed on read), is planned for the future, and some room is left for it. Reviewed-by: Michael Paquier <michael@paquier.xyz> Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com |
7 years ago |
|
|
2e3da03e9e |
tableam: Add table_get_latest_tid, to wrap heap_get_latest_tid.
This primarily is to allow WHERE CURRENT OF to continue to work as it currently does. It's not clear to me that these semantics make sense for every AM, but it works for the in-core heap, and the out of core zheap. We can refine it further at a later point if necessary. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
8edd0e7946 |
Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't doing anything useful, and can be elided. It does have a purpose during planning though, which is to serve as a buffer between parent and child Var numbering. Therefore we keep it all the way through to setrefs.c, and get rid of it only after fixing references in the plan level(s) above it. This works largely the same as setrefs.c's ancient hack to get rid of no-op SubqueryScan nodes, and can even share some code with that. Note the change to make setrefs.c use apply_tlist_labeling rather than ad-hoc code. This has the effect of propagating the child's resjunk and ressortgroupref labels, which formerly weren't propagated when removing a SubqueryScan. Doing that is demonstrably necessary for the [Merge]Append cases, and seems harmless for SubqueryScan, if only because trivial_subqueryscan is afraid to collapse cases where the resjunk marking differs. (I suspect that restriction could now be removed, though it's unclear that it'd make any new matches possible, since the outer query can't have references to a child resjunk column.) David Rowley, reviewed by Alvaro Herrera and Tomas Vondra Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com |
7 years ago |
|
|
9a8ee1dc65 |
tableam: Add and use table_fetch_row_version().
This is essentially the tableam version of heapam_fetch(), i.e. fetching a tuple identified by a tid, performing visibility checks. Note that this different from table_index_fetch_tuple(), which is for index lookups. It therefore has to handle a tid pointing to an earlier version of a tuple if the AM uses an optimization like heap's HOT. Add comments to that end. This commit removes the stats_relation argument from heap_fetch, as it's been unused for a long time. Author: Andres Freund Reviewed-By: Haribabu Kommi Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
280a408b48 |
Transaction chaining
Add command variants COMMIT AND CHAIN and ROLLBACK AND CHAIN, which start new transactions with the same transaction characteristics as the just finished one, per SQL standard. Support for transaction chaining in PL/pgSQL is also added. This functionality is especially useful when running COMMIT in a loop in PL/pgSQL. Reviewed-by: Fabien COELHO <coelho@cri.ensmp.fr> Discussion: https://www.postgresql.org/message-id/flat/28536681-324b-10dc-ade8-ab46f7645a5a@2ndquadrant.com |
7 years ago |
|
|
5db6df0c01 |
tableam: Add tuple_{insert, delete, update, lock} and use.
This adds new, required, table AM callbacks for insert/delete/update
and lock_tuple. To be able to reasonably use those, the EvalPlanQual
mechanism had to be adapted, moving more logic into the AM.
Previously both delete/update/lock call-sites and the EPQ mechanism had
to have awareness of the specific tuple format to be able to fetch the
latest version of a tuple. Obviously that needs to be abstracted
away. To do so, move the logic that find the latest row version into
the AM. lock_tuple has a new flag argument,
TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last
version, rather than the current one. It'd have been possible to do
so via a separate callback as well, but finding the last version
usually also necessitates locking the newest version, making it
sensible to combine the two. This replaces the previous use of
EvalPlanQualFetch(). Additionally HeapTupleUpdated, which previously
signaled either a concurrent update or delete, is now split into two,
to avoid callers needing AM specific knowledge to differentiate.
The move of finding the latest row version into tuple_lock means that
encountering a row concurrently moved into another partition will now
raise an error about "tuple to be locked" rather than "tuple to be
updated/deleted" - which is accurate, as that always happens when
locking rows. While possible slightly less helpful for users, it seems
like an acceptable trade-off.
As part of this commit HTSU_Result has been renamed to TM_Result, and
its members been expanded to differentiated between updating and
deleting. HeapUpdateFailureData has been renamed to TM_FailureData.
The interface to speculative insertion is changed so nodeModifyTable.c
does not have to set the speculative token itself anymore. Instead
there's a version of tuple_insert, tuple_insert_speculative, that
performs the speculative insertion (without requiring a flag to signal
that fact), and the speculative insertion is either made permanent
with table_complete_speculative(succeeded = true) or aborted with
succeeded = false).
Note that multi_insert is not yet routed through tableam, nor is
COPY. Changing multi_insert requires changes to copy.c that are large
enough to better be done separately.
Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED
VIEW are also only going to be adjusted in a later commit.
Author: Andres Freund and Haribabu Kommi
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |
|
|
5e1963fb76 |
Collations with nondeterministic comparison
This adds a flag "deterministic" to collations. If that is false, such a collation disables various optimizations that assume that strings are equal only if they are byte-wise equal. That then allows use cases such as case-insensitive or accent-insensitive comparisons or handling of strings with different Unicode normal forms. This functionality is only supported with the ICU provider. At least glibc doesn't appear to have any locales that work in a nondeterministic way, so it's not worth supporting this for the libc provider. The term "deterministic comparison" in this context is from Unicode Technical Standard #10 (https://unicode.org/reports/tr10/#Deterministic_Comparison). This patch makes changes in three areas: - CREATE COLLATION DDL changes and system catalog changes to support this new flag. - Many executor nodes and auxiliary code are extended to track collations. Previously, this code would just throw away collation information, because the eventually-called user-defined functions didn't use it since they only cared about equality, which didn't need collation information. - String data type functions that do equality comparisons and hashing are changed to take the (non-)deterministic flag into account. For comparison, this just means skipping various shortcuts and tie breakers that use byte-wise comparison. For hashing, we first need to convert the input string to a canonical "sort key" using the ICU analogue of strxfrm(). Reviewed-by: Daniel Verite <daniel@manitou-mail.org> Reviewed-by: Peter Geoghegan <pg@bowt.ie> Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com |
7 years ago |
|
|
bb16aba50c |
Enable parallel query with SERIALIZABLE isolation.
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used. Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.
An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:
The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.
Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction. In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.
Remove the serializable_okay flag added to CreateParallelContext() by
commit
|
7 years ago |
|
|
8bee36708f |
Remove unused #include
|
7 years ago |
|
|
c6ff0b892c |
Refactor ParamListInfo initialization
There were six copies of identical nontrivial code. Put it into a function. |
7 years ago |
|
|
c2fe139c20 |
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |
|
|
af38498d4c |
Move hash_any prototype from access/hash.h to utils/hashutils.h
... as well as its implementation from backend/access/hash/hashfunc.c to backend/utils/hash/hashfn.c. access/hash is the place for the hash index AM, not really appropriate for generic facilities, which is what hash_any is; having things the old way meant that anything using hash_any had to include the AM's include file, pointlessly polluting its namespace with unrelated, unnecessary cruft. Also move the HTEqual strategy number to access/stratnum.h from access/hash.h. To avoid breaking third-party extension code, add an #include "utils/hashutils.h" to access/hash.h. (An easily removed line by committers who enjoy their asbestos suits to protect them from angry extension authors.) Discussion: https://postgr.es/m/201901251935.ser5e4h6djt2@alvherre.pgsql |
7 years ago |
|
|
898e5e3290 |
Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because otherwise an insert that violates the newly-imposed partition constraint could be in progress at the same time that we're changing that constraint; only the lock level on the parent relation is weakened. To make this safe, we have to cope with (at least) three separate problems. First, relevant DDL might commit while we're in the process of building a PartitionDesc. If so, find_inheritance_children() might see a new partition while the RELOID system cache still has the old partition bound cached, and even before invalidation messages have been queued. To fix that, if we see that the pg_class tuple seems to be missing or to have a null relpartbound, refetch the value directly from the table. We can't get the wrong value, because DETACH PARTITION still requires AccessExclusiveLock throughout; if we ever want to change that, this will need more thought. In testing, I found it quite difficult to hit even the null-relpartbound case; the race condition is extremely tight, but the theoretical risk is there. Second, successive calls to RelationGetPartitionDesc might not return the same answer. The query planner will get confused if lookup up the PartitionDesc for a particular relation does not return a consistent answer for the entire duration of query planning. Likewise, query execution will get confused if the same relation seems to have a different PartitionDesc at different times. Invent a new PartitionDirectory concept and use it to ensure consistency. This ensures that a single invocation of either the planner or the executor sees the same view of the PartitionDesc from beginning to end, but it does not guarantee that the planner and the executor see the same view. Since this allows pointers to old PartitionDesc entries to survive even after a relcache rebuild, also postpone removing the old PartitionDesc entry until we're certain no one is using it. For the most part, it seems to be OK for the planner and executor to have different views of the PartitionDesc, because the executor will just ignore any concurrently added partitions which were unknown at plan time; those partitions won't be part of the inheritance expansion, but invalidation messages will trigger replanning at some point. Normally, this happens by the time the very next command is executed, but if the next command acquires no locks and executes a prepared query, it can manage not to notice until a new transaction is started. We might want to tighten that up, but it's material for a separate patch. There would still be a small window where a query that started just after an ATTACH PARTITION command committed might fail to notice its results -- but only if the command starts before the commit has been acknowledged to the user. All in all, the warts here around serializability seem small enough to be worth accepting for the considerable advantage of being able to add partitions without a full table lock. Although in general the consequences of new partitions showing up between planning and execution are limited to the query not noticing the new partitions, run-time partition pruning will get confused in that case, so that's the third problem that this patch fixes. Run-time partition pruning assumes that indexes into the PartitionDesc are stable between planning and execution. So, add code so that if new partitions are added between plan time and execution time, the indexes stored in the subplan_map[] and subpart_map[] arrays within the plan's PartitionedRelPruneInfo get adjusted accordingly. There does not seem to be a simple way to generalize this scheme to cope with partitions that are removed, mostly because they could then get added back again with different bounds, but it works OK for added partitions. This code does not try to ensure that every backend participating in a parallel query sees the same view of the PartitionDesc. That currently doesn't matter, because we never pass PartitionDesc indexes between backends. Each backend will ignore the concurrently added partitions which it notices, and it doesn't matter if different backends are ignoring different sets of concurrently added partitions. If in the future that matters, for example because we allow writes in parallel query and want all participants to do tuple routing to the same set of partitions, the PartitionDirectory concept could be improved to share PartitionDescs across backends. There is a draft patch to serialize and restore PartitionDescs on the thread where this patch was discussed, which may be a useful place to start. Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs, Amit Langote, and Michael Paquier for discussion, and to Alvaro Herrera for some review. Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com |
7 years ago |
|
|
277cb78983 |
Don't reuse slots between root and partition in ON CONFLICT ... UPDATE.
Until now the the slot to store the conflicting tuple, and the result of the ON CONFLICT SET, where reused between partitions. That necessitated changing slots descriptor when switching partitions. Besides the overhead of switching descriptors on a slot (which requires memory allocations and prevents JITing), that's importantly also problematic for tableam. There individual partitions might belong to different tableams, needing different kinds of slots. In passing also fix ExecOnConflictUpdate to clear the existing slot at exit. Otherwise that slot could continue to hold a pin till the query ends, which could be far too long if the input data set is large, and there's no further conflicts. While previously also problematic, it's now more important as there will be more such slots when partitioned. Author: Andres Freund Reviewed-By: Robert Haas, David Rowley Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
f217761856 |
Fix bug in clearing of virtual tuple slot.
I broke/typoed this in
|
7 years ago |