mirror of https://github.com/postgres/postgres
Tag:
Branch:
Tree:
9154ededfc
REL2_0B
REL6_4
REL6_5_PATCHES
REL7_0_PATCHES
REL7_1_STABLE
REL7_2_STABLE
REL7_3_STABLE
REL7_4_STABLE
REL8_0_STABLE
REL8_1_STABLE
REL8_2_STABLE
REL8_3_STABLE
REL8_4_STABLE
REL8_5_ALPHA1_BRANCH
REL8_5_ALPHA2_BRANCH
REL8_5_ALPHA3_BRANCH
REL9_0_ALPHA4_BRANCH
REL9_0_ALPHA5_BRANCH
REL9_0_STABLE
REL9_1_STABLE
REL9_2_STABLE
REL9_3_STABLE
REL9_4_STABLE
REL9_5_STABLE
REL9_6_STABLE
REL_10_STABLE
REL_11_STABLE
REL_12_STABLE
REL_13_STABLE
REL_14_STABLE
REL_15_STABLE
REL_16_STABLE
REL_17_STABLE
REL_18_STABLE
Release_1_0_3
WIN32_DEV
ecpg_big_bison
master
PG95-1_01
PG95-1_08
PG95-1_09
REL2_0
REL6_1
REL6_1_1
REL6_2
REL6_2_1
REL6_3
REL6_3_2
REL6_4_2
REL6_5
REL6_5_1
REL6_5_2
REL6_5_3
REL7_0
REL7_0_2
REL7_0_3
REL7_1
REL7_1_1
REL7_1_2
REL7_1_3
REL7_1_BETA
REL7_1_BETA2
REL7_1_BETA3
REL7_2
REL7_2_1
REL7_2_2
REL7_2_3
REL7_2_4
REL7_2_5
REL7_2_6
REL7_2_7
REL7_2_8
REL7_2_BETA1
REL7_2_BETA2
REL7_2_BETA3
REL7_2_BETA4
REL7_2_BETA5
REL7_2_RC1
REL7_2_RC2
REL7_3
REL7_3_1
REL7_3_10
REL7_3_11
REL7_3_12
REL7_3_13
REL7_3_14
REL7_3_15
REL7_3_16
REL7_3_17
REL7_3_18
REL7_3_19
REL7_3_2
REL7_3_20
REL7_3_21
REL7_3_3
REL7_3_4
REL7_3_5
REL7_3_6
REL7_3_7
REL7_3_8
REL7_3_9
REL7_4
REL7_4_1
REL7_4_10
REL7_4_11
REL7_4_12
REL7_4_13
REL7_4_14
REL7_4_15
REL7_4_16
REL7_4_17
REL7_4_18
REL7_4_19
REL7_4_2
REL7_4_20
REL7_4_21
REL7_4_22
REL7_4_23
REL7_4_24
REL7_4_25
REL7_4_26
REL7_4_27
REL7_4_28
REL7_4_29
REL7_4_3
REL7_4_30
REL7_4_4
REL7_4_5
REL7_4_6
REL7_4_7
REL7_4_8
REL7_4_9
REL7_4_BETA1
REL7_4_BETA2
REL7_4_BETA3
REL7_4_BETA4
REL7_4_BETA5
REL7_4_RC1
REL7_4_RC2
REL8_0_0
REL8_0_0BETA1
REL8_0_0BETA2
REL8_0_0BETA3
REL8_0_0BETA4
REL8_0_0BETA5
REL8_0_0RC1
REL8_0_0RC2
REL8_0_0RC3
REL8_0_0RC4
REL8_0_0RC5
REL8_0_1
REL8_0_10
REL8_0_11
REL8_0_12
REL8_0_13
REL8_0_14
REL8_0_15
REL8_0_16
REL8_0_17
REL8_0_18
REL8_0_19
REL8_0_2
REL8_0_20
REL8_0_21
REL8_0_22
REL8_0_23
REL8_0_24
REL8_0_25
REL8_0_26
REL8_0_3
REL8_0_4
REL8_0_5
REL8_0_6
REL8_0_7
REL8_0_8
REL8_0_9
REL8_1_0
REL8_1_0BETA1
REL8_1_0BETA2
REL8_1_0BETA3
REL8_1_0BETA4
REL8_1_0RC1
REL8_1_1
REL8_1_10
REL8_1_11
REL8_1_12
REL8_1_13
REL8_1_14
REL8_1_15
REL8_1_16
REL8_1_17
REL8_1_18
REL8_1_19
REL8_1_2
REL8_1_20
REL8_1_21
REL8_1_22
REL8_1_23
REL8_1_3
REL8_1_4
REL8_1_5
REL8_1_6
REL8_1_7
REL8_1_8
REL8_1_9
REL8_2_0
REL8_2_1
REL8_2_10
REL8_2_11
REL8_2_12
REL8_2_13
REL8_2_14
REL8_2_15
REL8_2_16
REL8_2_17
REL8_2_18
REL8_2_19
REL8_2_2
REL8_2_20
REL8_2_21
REL8_2_22
REL8_2_23
REL8_2_3
REL8_2_4
REL8_2_5
REL8_2_6
REL8_2_7
REL8_2_8
REL8_2_9
REL8_2_BETA1
REL8_2_BETA2
REL8_2_BETA3
REL8_2_RC1
REL8_3_0
REL8_3_1
REL8_3_10
REL8_3_11
REL8_3_12
REL8_3_13
REL8_3_14
REL8_3_15
REL8_3_16
REL8_3_17
REL8_3_18
REL8_3_19
REL8_3_2
REL8_3_20
REL8_3_21
REL8_3_22
REL8_3_23
REL8_3_3
REL8_3_4
REL8_3_5
REL8_3_6
REL8_3_7
REL8_3_8
REL8_3_9
REL8_3_BETA1
REL8_3_BETA2
REL8_3_BETA3
REL8_3_BETA4
REL8_3_RC1
REL8_3_RC2
REL8_4_0
REL8_4_1
REL8_4_10
REL8_4_11
REL8_4_12
REL8_4_13
REL8_4_14
REL8_4_15
REL8_4_16
REL8_4_17
REL8_4_18
REL8_4_19
REL8_4_2
REL8_4_20
REL8_4_21
REL8_4_22
REL8_4_3
REL8_4_4
REL8_4_5
REL8_4_6
REL8_4_7
REL8_4_8
REL8_4_9
REL8_4_BETA1
REL8_4_BETA2
REL8_4_RC1
REL8_4_RC2
REL8_5_ALPHA1
REL8_5_ALPHA2
REL8_5_ALPHA3
REL9_0_0
REL9_0_1
REL9_0_10
REL9_0_11
REL9_0_12
REL9_0_13
REL9_0_14
REL9_0_15
REL9_0_16
REL9_0_17
REL9_0_18
REL9_0_19
REL9_0_2
REL9_0_20
REL9_0_21
REL9_0_22
REL9_0_23
REL9_0_3
REL9_0_4
REL9_0_5
REL9_0_6
REL9_0_7
REL9_0_8
REL9_0_9
REL9_0_ALPHA4
REL9_0_ALPHA5
REL9_0_BETA1
REL9_0_BETA2
REL9_0_BETA3
REL9_0_BETA4
REL9_0_RC1
REL9_1_0
REL9_1_1
REL9_1_10
REL9_1_11
REL9_1_12
REL9_1_13
REL9_1_14
REL9_1_15
REL9_1_16
REL9_1_17
REL9_1_18
REL9_1_19
REL9_1_2
REL9_1_20
REL9_1_21
REL9_1_22
REL9_1_23
REL9_1_24
REL9_1_3
REL9_1_4
REL9_1_5
REL9_1_6
REL9_1_7
REL9_1_8
REL9_1_9
REL9_1_ALPHA1
REL9_1_ALPHA2
REL9_1_ALPHA3
REL9_1_ALPHA4
REL9_1_ALPHA5
REL9_1_BETA1
REL9_1_BETA2
REL9_1_BETA3
REL9_1_RC1
REL9_2_0
REL9_2_1
REL9_2_10
REL9_2_11
REL9_2_12
REL9_2_13
REL9_2_14
REL9_2_15
REL9_2_16
REL9_2_17
REL9_2_18
REL9_2_19
REL9_2_2
REL9_2_20
REL9_2_21
REL9_2_22
REL9_2_23
REL9_2_24
REL9_2_3
REL9_2_4
REL9_2_5
REL9_2_6
REL9_2_7
REL9_2_8
REL9_2_9
REL9_2_BETA1
REL9_2_BETA2
REL9_2_BETA3
REL9_2_BETA4
REL9_2_RC1
REL9_3_0
REL9_3_1
REL9_3_10
REL9_3_11
REL9_3_12
REL9_3_13
REL9_3_14
REL9_3_15
REL9_3_16
REL9_3_17
REL9_3_18
REL9_3_19
REL9_3_2
REL9_3_20
REL9_3_21
REL9_3_22
REL9_3_23
REL9_3_24
REL9_3_25
REL9_3_3
REL9_3_4
REL9_3_5
REL9_3_6
REL9_3_7
REL9_3_8
REL9_3_9
REL9_3_BETA1
REL9_3_BETA2
REL9_3_RC1
REL9_4_0
REL9_4_1
REL9_4_10
REL9_4_11
REL9_4_12
REL9_4_13
REL9_4_14
REL9_4_15
REL9_4_16
REL9_4_17
REL9_4_18
REL9_4_19
REL9_4_2
REL9_4_20
REL9_4_21
REL9_4_22
REL9_4_23
REL9_4_24
REL9_4_25
REL9_4_26
REL9_4_3
REL9_4_4
REL9_4_5
REL9_4_6
REL9_4_7
REL9_4_8
REL9_4_9
REL9_4_BETA1
REL9_4_BETA2
REL9_4_BETA3
REL9_4_RC1
REL9_5_0
REL9_5_1
REL9_5_10
REL9_5_11
REL9_5_12
REL9_5_13
REL9_5_14
REL9_5_15
REL9_5_16
REL9_5_17
REL9_5_18
REL9_5_19
REL9_5_2
REL9_5_20
REL9_5_21
REL9_5_22
REL9_5_23
REL9_5_24
REL9_5_25
REL9_5_3
REL9_5_4
REL9_5_5
REL9_5_6
REL9_5_7
REL9_5_8
REL9_5_9
REL9_5_ALPHA1
REL9_5_ALPHA2
REL9_5_BETA1
REL9_5_BETA2
REL9_5_RC1
REL9_6_0
REL9_6_1
REL9_6_10
REL9_6_11
REL9_6_12
REL9_6_13
REL9_6_14
REL9_6_15
REL9_6_16
REL9_6_17
REL9_6_18
REL9_6_19
REL9_6_2
REL9_6_20
REL9_6_21
REL9_6_22
REL9_6_23
REL9_6_24
REL9_6_3
REL9_6_4
REL9_6_5
REL9_6_6
REL9_6_7
REL9_6_8
REL9_6_9
REL9_6_BETA1
REL9_6_BETA2
REL9_6_BETA3
REL9_6_BETA4
REL9_6_RC1
REL_10_0
REL_10_1
REL_10_10
REL_10_11
REL_10_12
REL_10_13
REL_10_14
REL_10_15
REL_10_16
REL_10_17
REL_10_18
REL_10_19
REL_10_2
REL_10_20
REL_10_21
REL_10_22
REL_10_23
REL_10_3
REL_10_4
REL_10_5
REL_10_6
REL_10_7
REL_10_8
REL_10_9
REL_10_BETA1
REL_10_BETA2
REL_10_BETA3
REL_10_BETA4
REL_10_RC1
REL_11_0
REL_11_1
REL_11_10
REL_11_11
REL_11_12
REL_11_13
REL_11_14
REL_11_15
REL_11_16
REL_11_17
REL_11_18
REL_11_19
REL_11_2
REL_11_20
REL_11_21
REL_11_22
REL_11_3
REL_11_4
REL_11_5
REL_11_6
REL_11_7
REL_11_8
REL_11_9
REL_11_BETA1
REL_11_BETA2
REL_11_BETA3
REL_11_BETA4
REL_11_RC1
REL_12_0
REL_12_1
REL_12_10
REL_12_11
REL_12_12
REL_12_13
REL_12_14
REL_12_15
REL_12_16
REL_12_17
REL_12_18
REL_12_19
REL_12_2
REL_12_20
REL_12_21
REL_12_22
REL_12_3
REL_12_4
REL_12_5
REL_12_6
REL_12_7
REL_12_8
REL_12_9
REL_12_BETA1
REL_12_BETA2
REL_12_BETA3
REL_12_BETA4
REL_12_RC1
REL_13_0
REL_13_1
REL_13_10
REL_13_11
REL_13_12
REL_13_13
REL_13_14
REL_13_15
REL_13_16
REL_13_17
REL_13_18
REL_13_19
REL_13_2
REL_13_20
REL_13_21
REL_13_22
REL_13_3
REL_13_4
REL_13_5
REL_13_6
REL_13_7
REL_13_8
REL_13_9
REL_13_BETA1
REL_13_BETA2
REL_13_BETA3
REL_13_RC1
REL_14_0
REL_14_1
REL_14_10
REL_14_11
REL_14_12
REL_14_13
REL_14_14
REL_14_15
REL_14_16
REL_14_17
REL_14_18
REL_14_19
REL_14_2
REL_14_3
REL_14_4
REL_14_5
REL_14_6
REL_14_7
REL_14_8
REL_14_9
REL_14_BETA1
REL_14_BETA2
REL_14_BETA3
REL_14_RC1
REL_15_0
REL_15_1
REL_15_10
REL_15_11
REL_15_12
REL_15_13
REL_15_14
REL_15_2
REL_15_3
REL_15_4
REL_15_5
REL_15_6
REL_15_7
REL_15_8
REL_15_9
REL_15_BETA1
REL_15_BETA2
REL_15_BETA3
REL_15_BETA4
REL_15_RC1
REL_15_RC2
REL_16_0
REL_16_1
REL_16_10
REL_16_2
REL_16_3
REL_16_4
REL_16_5
REL_16_6
REL_16_7
REL_16_8
REL_16_9
REL_16_BETA1
REL_16_BETA2
REL_16_BETA3
REL_16_RC1
REL_17_0
REL_17_1
REL_17_2
REL_17_3
REL_17_4
REL_17_5
REL_17_6
REL_17_BETA1
REL_17_BETA2
REL_17_BETA3
REL_17_RC1
REL_18_BETA1
REL_18_BETA2
REL_18_BETA3
REL_18_RC1
Release_1_0_2
Release_2_0
Release_2_0_0
release-6-3
${ noResults }
332 Commits (9154ededfc99e7637cd61b4ca10f28796125ece2)
Author | SHA1 | Message | Date |
---|---|---|---|
![]() |
5262f7a4fc |
Add optimizer and executor support for parallel index scans.
In combination with
|
9 years ago |
![]() |
69f4b9c85f |
Move targetlist SRF handling from expression evaluation to new executor node.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de |
9 years ago |
![]() |
1d25779284 |
Update copyright via script for 2017
|
9 years ago |
![]() |
0832f2db68 |
Fix latent costing error in create_merge_append_path.
create_merge_append_path should use the path rowcount it just computed, not rel->tuples, for costing purposes. Those numbers should always be the same at present, but if we ever support parameterized MergeAppend paths (a case this function is otherwise prepared for), the former would be right and the latter wrong. No need for back-patch since the problem is only latent. Ashutosh Bapat Discussion: <CAFjFpRek+cLCnTo24youuGtsq4zRphEB8EUUPjDxZjnL4n4HYQ@mail.gmail.com> |
9 years ago |
![]() |
da1c91631e |
Speed up planner's scanning for parallel-query hazards.
We need to scan the whole parse tree for parallel-unsafe functions. If there are none, we'll later need to determine whether particular subtrees contain any parallel-restricted functions. The previous coding retained no knowledge from the first scan, even though this is very wasteful in the common case where the query contains only parallel-safe functions. We can bypass all of the later scans by remembering that fact. This provides a small but measurable speed improvement when the case applies, and shouldn't cost anything when it doesn't. Patch by me, reviewed by Robert Haas Discussion: <3740.1471538387@sss.pgh.pa.us> |
9 years ago |
![]() |
5ce5e4a12e |
Set consider_parallel correctly for upper planner rels.
Commit |
9 years ago |
![]() |
19e972d558 |
Rethink node-level representation of partial-aggregation modes.
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.
Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are). By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.
While at it, get rid of Aggref.aggoutputtype. That's not needed since
commit
|
9 years ago |
![]() |
8b9d323cb9 |
Refactor planning of projection steps that don't need a Result plan node.
The original upper-planner-pathification design (commit |
9 years ago |
![]() |
54f5c5150f |
Try again to fix the way the scanjoin_target is used with partial paths.
Commit
|
9 years ago |
![]() |
c9ce4a1c61 |
Eliminate "parallel degree" terminology.
This terminology provoked widespread complaints. So, instead, rename the GUC max_parallel_degree to max_parallel_workers_per_gather (leaving room for a possible future GUC max_parallel_workers that acts as a system-wide limit), and rename the parallel_degree reloption to parallel_workers. Rename structure members to match. These changes create a dump/restore hazard for users of PostgreSQL 9.6beta1 who have set the reloption (or applied the GUC using ALTER USER or ALTER DATABASE). |
9 years ago |
![]() |
c45bf5751b |
Fix planner crash from pfree'ing a partial path that a GatherPath uses.
We mustn't run generate_gather_paths() during add_paths_to_joinrel(), because that function can be invoked multiple times for the same target joinrel. Not only is it wasteful to build GatherPaths repeatedly, but a later add_partial_path() could delete the partial path that a previously created GatherPath depends on. Instead establish the convention that we do generate_gather_paths() for a rel only just before set_cheapest(). The code was accidentally not broken for baserels, because as of today there never is more than one partial path for a baserel. But that assumption obviously has a pretty short half-life, so move the generate_gather_paths() calls for those cases as well. Also add some generic comments explaining how and why this all works. Per fuzz testing by Andreas Seltenreich. Report: <871t5pgwdt.fsf@credativ.de> |
10 years ago |
![]() |
5fe5a2cee9 |
Allow aggregate transition states to be serialized and deserialized.
This is necessary infrastructure for supporting parallel aggregation for aggregates whose transition type is "internal". Such values can't be passed between cooperating processes, because they are just pointers. David Rowley, reviewed by Tomas Vondra and by me. |
10 years ago |
![]() |
e06a38965b |
Support parallel aggregation.
Parallel workers can now partially aggregate the data and pass the transition values back to the leader, which can combine the partial results to produce the final answer. David Rowley, based on earlier work by Haribabu Kommi. Reviewed by Álvaro Herrera, Tomas Vondra, Amit Kapila, James Sewell, and me. |
10 years ago |
![]() |
992b5ba30d |
Push scan/join target list beneath Gather when possible.
This means that, for example, "SELECT expensive_func(a) FROM bigtab WHERE something" can compute expensive_func(a) in the workers rather than the leader if it happens to be parallel-safe, which figures to be a big win in some practical cases. Currently, we can only do this if the entire target list is parallel-safe. If we worked harder, we might be able to evaluate parallel-safe targets in the worker and any parallel-restricted targets in the leader, but that would be more complicated, and there aren't that many parallel-restricted functions that people are likely to use in queries anyway. I think. So just do the simple thing for the moment. Robert Haas, Amit Kapila, and Tom Lane |
10 years ago |
![]() |
101fd9349e |
Add a GetForeignUpperPaths callback function for FDWs.
This is basically like the just-added create_upper_paths_hook, but control is funneled only to the FDW responsible for all the baserels of the current query; so providing such a callback is much less likely to add useless overhead than using the hook function is. The documentation is a bit sketchy. We'll likely want to improve it, and/or adjust the call conventions, when we get some experience with actually using this callback. Hopefully somebody will find time to experiment with it before 9.6 feature freeze. |
10 years ago |
![]() |
28048cbaa2 |
Allow callers of create_foreignscan_path to specify nondefault PathTarget.
Although the default choice of rel->reltarget should typically be sufficient for scan or join paths, it's not at all sufficient for the purposes PathTargets were invented for; in particular not for upper-relation Paths. So break API compatibility by adding a PathTarget argument to create_foreignscan_path(). To ease updating of existing code, accept a NULL value of the argument as selecting rel->reltarget. |
10 years ago |
![]() |
307c78852f |
Rethink representation of PathTargets.
In commit
|
10 years ago |
![]() |
9e8b99420f |
Improve handling of group-column indexes in GroupingSetsPath.
Instead of having planner.c compute a groupColIdx array and store it in GroupingSetsPaths, make create_groupingsets_plan() find the grouping columns by searching in the child plan node's tlist. Although that's probably a bit slower for create_groupingsets_plan(), it's more like the way every other plan node type does this, and it provides positive confirmation that we know which child output columns we're supposed to be grouping on. (Indeed, looking at this now, I'm not at all sure that it wasn't broken before, because create_groupingsets_plan() isn't demanding an exact tlist match from its child node.) Also, this allows substantial simplification in planner.c, because it no longer needs to compute the groupColIdx array at all; no other cases were using it. I'd intended to put off this refactoring until later (like 9.7), but in view of the likely bug fix and the need to rationalize planner.c's tlist handling so we can do something sane with Konstantin Knizhnik's function-evaluation-postponement patch, I think it can't wait. |
10 years ago |
![]() |
8c314b9853 |
Finish refactoring make_foo() functions in createplan.c.
This patch removes some redundant cost calculations that I left for later
cleanup in commit
|
10 years ago |
![]() |
3fc6e2d7f5 |
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review. |
10 years ago |
![]() |
19a541143a |
Add an explicit representation of the output targetlist to Paths.
Up to now, there's been an assumption that all Paths for a given relation compute the same output column set (targetlist). However, there are good reasons to remove that assumption. For example, an indexscan on an expression index might be able to return the value of an expensive function "for free". While we have the ability to generate such a plan today in simple cases, we don't have a way to model that it's cheaper than a plan that computes the function from scratch, nor a way to create such a plan in join cases (where the function computation would normally happen at the topmost join node). Also, we need this so that we can have Paths representing post-scan/join steps, where the targetlist may well change from one step to the next. Therefore, invent a "struct PathTarget" representing the columns we expect a plan step to emit. It's convenient to include the output tuple width and tlist evaluation cost in this struct, and there will likely be additional fields in future. While Path nodes that actually do have custom outputs will need their own PathTargets, it will still be true that most Paths for a given relation will compute the same tlist. To reduce the overhead added by this patch, keep a "default PathTarget" in RelOptInfo, and allow Paths that compute that column set to just point to their parent RelOptInfo's reltarget. (In the patch as committed, actually every Path is like that, since we do not yet have any cases of custom PathTargets.) I took this opportunity to provide some more-honest costing of PlaceHolderVar evaluation. Up to now, the assumption that "scan/join reltargetlists have cost zero" was applied not only to Vars, where it's reasonable, but also PlaceHolderVars where it isn't. Now, we add the eval cost of a PlaceHolderVar's expression to the first plan level where it can be computed, by including it in the PathTarget cost field and adding that to the cost estimates for Paths. This isn't perfect yet but it's much better than before, and there is a way forward to improve it more. This costing change affects the join order chosen for a couple of the regression tests, changing expected row ordering. |
10 years ago |
![]() |
45be99f8cd |
Support parallel joins, and make related improvements.
The core innovation of this patch is the introduction of the concept of a partial path; that is, a path which if executed in parallel will generate a subset of the output rows in each process. Gathering a partial path produces an ordinary (complete) path. This allows us to generate paths for parallel joins by joining a partial path for one side (which at the baserel level is currently always a Partial Seq Scan) to an ordinary path on the other side. This is subject to various restrictions at present, especially that this strategy seems unlikely to be sensible for merge joins, so only nested loops and hash joins paths are generated. This also allows an Append node to be pushed below a Gather node in the case of a partitioned table. Testing revealed that early versions of this patch made poor decisions in some cases, which turned out to be caused by the fact that the original cost model for Parallel Seq Scan wasn't very good. So this patch tries to make some modest improvements in that area. There is much more to be done in the area of generating good parallel plans in all cases, but this seems like a useful step forward. Patch by me, reviewed by Dilip Kumar and Amit Kapila. |
10 years ago |
![]() |
ee94300446 |
Update copyright for 2016
Backpatch certain files through 9.1 |
10 years ago |
![]() |
385f337c9f |
Allow foreign and custom joins to handle EvalPlanQual rechecks.
Commit
|
10 years ago |
![]() |
f0661c4e8c |
Make sequential scans parallel-aware.
In addition, this path fills in a number of missing bits and pieces in the parallel infrastructure. Paths and plans now have a parallel_aware flag indicating whether whatever parallel-aware logic they have should be engaged. It is believed that we will need this flag for a number of path/plan types, not just sequential scans, which is why the flag is generic rather than part of the SeqScan structures specifically. Also, execParallel.c now gives parallel nodes a chance to initialize their PlanState nodes from the DSM during parallel worker startup. Amit Kapila, with a fair amount of adjustment by me. Review of previous patch versions by Haribabu Kommi and others. |
10 years ago |
![]() |
3bd909b220 |
Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal number of workers and merges all of the results into a single tuple stream. It can also run the plan itself, if the workers are unavailable or haven't started up yet. It is intended to work with the Partial Seq Scan node which will be added in future commits. It could also be used to implement parallel query of a different sort by itself, without help from Partial Seq Scan, if the single_copy mode is used. In that mode, a worker executes the plan, and the parallel leader does not, merely collecting the worker's results. So, a Gather node could be inserted into a plan to split the execution of that plan across two processes. Nested Gather nodes aren't currently supported, but we might want to add support for that in the future. There's nothing in the planner to actually generate Gather nodes yet, so it's not quite time to break out the champagne. But we're getting close. Amit Kapila. Some designs suggestions were provided by me, and I also reviewed the patch. Single-copy mode, documentation, and other minor changes also by me. |
10 years ago |
![]() |
758fcfdc01 |
Comment update for join pushdown.
Etsuro Fujita |
10 years ago |
![]() |
dd7a8f66ed |
Redesign tablesample method API, and do extensive code review.
The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production. |
10 years ago |
![]() |
3b0f77601b |
Fix some questionable edge-case behaviors in add_path() and friends.
add_path_precheck was doing exact comparisons of path costs, but it really
needs to do them fuzzily to be sure it won't reject paths that could
survive add_path's comparisons. (This can only matter if the initial cost
estimate is very close to the final one, but that turns out to often be
true.)
Also, it should ignore startup cost for this purpose if and only if
compare_path_costs_fuzzily would do so. The previous coding always ignored
startup cost for parameterized paths, which is wrong as of commit
3f59be836c555fa6; it could result in improper early rejection of paths that
we care about for SEMI/ANTI joins. It also always considered startup cost
for unparameterized paths, which is just as wrong though the only effect is
to waste planner cycles on paths that can't survive. Instead, it should
consider startup cost only when directed to by the consider_startup/
consider_param_startup relation flags.
Likewise, compare_path_costs_fuzzily should have symmetrical behavior
for parameterized and unparameterized paths. In this case, the best
answer seems to be that after establishing that total costs are fuzzily
equal, we should compare startup costs whether or not the consider_xxx
flags are on. That is what it's always done for unparameterized paths,
so let's make the behavior for parameterized paths match.
These issues were noted while developing the SEMI/ANTI join costing fix
of commit
|
10 years ago |
![]() |
3f59be836c |
Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans.
When the inner side of a nestloop SEMI or ANTI join is an indexscan that uses all the join clauses as indexquals, it can be presumed that both matched and unmatched outer rows will be processed very quickly: for matched rows, we'll stop after fetching one row from the indexscan, while for unmatched rows we'll have an indexscan that finds no matching index entries, which should also be quick. The planner already knew about this, but it was nonetheless charging for at least one full run of the inner indexscan, as a consequence of concerns about the behavior of materialized inner scans --- but those concerns don't apply in the fast case. If the inner side has low cardinality (many matching rows) this could make an indexscan plan look far more expensive than it actually is. To fix, rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we don't add the inner scan cost until we've inspected the indexquals, and then we can add either the full-run cost or just the first tuple's cost as appropriate. Experimentation with this fix uncovered another problem: add_path and friends were coded to disregard cheap startup cost when considering parameterized paths. That's usually okay (and desirable, because it thins the path herd faster); but in this fast case for SEMI/ANTI joins, it could result in throwing away the desired plain indexscan path in favor of a bitmap scan path before we ever get to the join costing logic. In the many-matching-rows cases of interest here, a bitmap scan will do a lot more work than required, so this is a problem. To fix, add a per-relation flag consider_param_startup that works like the existing consider_startup flag, but applies to parameterized paths, and set it for relations that are the inside of a SEMI or ANTI join. To make this patch reasonably safe to back-patch, care has been taken to avoid changing the planner's behavior except in the very narrow case of SEMI/ANTI joins with inner indexscans. There are places in compare_path_costs_fuzzily and add_path_precheck that are not terribly consistent with the new approach, but changing them will affect planner decisions at the margins in other cases, so we'll leave that for a HEAD-only fix. Back-patch to 9.3; before that, the consider_startup flag didn't exist, meaning that the second aspect of the patch would be too invasive. Per a complaint from Peter Holzer and analysis by Tomas Vondra. |
10 years ago |
![]() |
807b9e0dff |
pgindent run for 9.5
|
10 years ago |
![]() |
f3d3118532 |
Support GROUPING SETS, CUBE and ROLLUP.
This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com |
10 years ago |
![]() |
f6d208d6e5 |
TABLESAMPLE, SQL Standard and extensible
Add a TABLESAMPLE clause to SELECT statements that allows user to specify random BERNOULLI sampling or block level SYSTEM sampling. Implementation allows for extensible sampling functions to be written, using a standard API. Basic version follows SQLStandard exactly. Usable concrete use cases for the sampling API follow in later commits. Petr Jelinek Reviewed by Michael Paquier and Simon Riggs |
10 years ago |
![]() |
b55722692b |
Improve planner's cost estimation in the presence of semijoins.
If we have a semijoin, say SELECT * FROM x WHERE x1 IN (SELECT y1 FROM y) and we're estimating the cost of a parameterized indexscan on x, the number of repetitions of the indexscan should not be taken as the size of y; it'll really only be the number of distinct values of y1, because the only valid plan with y on the outside of a nestloop would require y to be unique-ified before joining it to x. Most of the time this doesn't make that much difference, but sometimes it can lead to drastically underestimating the cost of the indexscan and hence choosing a bad plan, as pointed out by David Kubečka. Fixing this is a bit difficult because parameterized indexscans are costed out quite early in the planning process, before we have the information that would be needed to call estimate_num_groups() and thereby estimate the number of distinct values of the join column(s). However we can move the code that extracts a semijoin RHS's unique-ification columns, so that it's done in initsplan.c rather than on-the-fly in create_unique_path(). That shouldn't make any difference speed-wise and it's really a bit cleaner too. The other bit of information we need is the size of the semijoin RHS, which is easy if it's a single relation (we make those estimates before considering indexscan costs) but problematic if it's a join relation. The solution adopted here is just to use the product of the sizes of the join component rels. That will generally be an overestimate, but since estimate_num_groups() only uses this input as a clamp, an overestimate shouldn't hurt us too badly. In any case we don't allow this new logic to produce a value larger than we would have chosen before, so that at worst an overestimate leaves us no wiser than we were before. |
11 years ago |
![]() |
4baaf863ec |
Update copyright for 2015
Backpatch certain files through 9.0 |
11 years ago |
![]() |
c2ea2285e9 |
Simplify API for initially hooking custom-path providers into the planner.
Instead of register_custom_path_provider and a CreateCustomScanPath callback, let's just provide a standard function hook in set_rel_pathlist. This is more flexible than what was previously committed, is more like the usual conventions for planner hooks, and requires less support code in the core. We had discussed this design (including centralizing the set_cheapest() calls) back in March or so, so I'm not sure why it wasn't done like this already. |
11 years ago |
![]() |
a34fa8ee7c |
Initial code review for CustomScan patch.
Get rid of the pernicious entanglement between planner and executor headers
introduced by commit
|
11 years ago |
![]() |
0b03e5951b |
Introduce custom path and scan providers.
This allows extension modules to define their own methods for scanning a relation, and get the core code to use them. It's unclear as yet how much use this capability will find, but we won't find out if we never commit it. KaiGai Kohei, reviewed at various times and in various levels of detail by Shigeru Hanada, Tom Lane, Andres Freund, Álvaro Herrera, and myself. |
11 years ago |
![]() |
f15821eefd |
Allow join removal in some cases involving a left join to a subquery.
We can remove a left join to a relation if the relation's output is provably distinct for the columns involved in the join clause (considering only equijoin clauses) and the relation supplies no variables needed above the join. Previously, the join removal logic could only prove distinctness by reference to unique indexes of a table. This patch extends the logic to consider subquery relations, wherein distinctness might be proven by reference to GROUP BY, DISTINCT, etc. We actually already had some code to check that a subquery's output was provably distinct, but it was hidden inside pathnode.c; which was a pretty bad place for it really, since that file is mostly boilerplate Path construction and comparison. Move that code to analyzejoins.c, which is arguably a more appropriate location, and is certainly the site of the new usage for it. David Rowley, reviewed by Simon Riggs |
11 years ago |
![]() |
9e2f2d7a05 |
Don't assume a subquery's output is unique if there's a SRF in its tlist.
While the x output of "select x from t group by x" can be presumed unique, this does not hold for "select x, generate_series(1,10) from t group by x", because we may expand the set-returning function after the grouping step. (Perhaps that should be re-thought; but considering all the other oddities involved with SRFs in targetlists, it seems unlikely we'll change it.) Put a check in query_is_distinct_for() so it's not fooled by such cases. Back-patch to all supported branches. David Rowley |
11 years ago |
![]() |
0a78320057 |
pgindent run for 9.4
This includes removing tabs after periods in C comments, which was applied to back branches, so this change should not effect backpatching. |
12 years ago |
![]() |
7e04792a1c |
Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back branches. |
12 years ago |
![]() |
784e762e88 |
Support multi-argument UNNEST(), and TABLE() syntax for multiple functions.
This patch adds the ability to write TABLE( function1(), function2(), ...) as a single FROM-clause entry. The result is the concatenation of the first row from each function, followed by the second row from each function, etc; with NULLs inserted if any function produces fewer rows than others. This is believed to be a much more useful behavior than what Postgres currently does with multiple SRFs in a SELECT list. This syntax also provides a reasonable way to combine use of column definition lists with WITH ORDINALITY: put the column definition list inside TABLE(), where it's clear that it doesn't control the ordinality column as well. Also implement SQL-compliant multiple-argument UNNEST(), by turning UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)). The SQL standard specifies TABLE() with only a single function, not multiple functions, and it seems to require an implicit UNNEST() which is not what this patch does. There may be something wrong with that reading of the spec, though, because if it's right then the spec's TABLE() is just a pointless alternative spelling of UNNEST(). After further review of that, we might choose to adopt a different syntax for what this patch does, but in any case this functionality seems clearly worthwhile. Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and significantly revised by me |
12 years ago |
![]() |
9af4159fce |
pgindent run for release 9.3
This is the first run of the Perl-based pgindent script. Also update pgindent instructions. |
12 years ago |
![]() |
bd61a623ac |
Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and legal.sgml files. |
13 years ago |
![]() |
6d2c8c0e2a |
Drop cheap-startup-cost paths during add_path() if we don't need them.
We can detect whether the planner top level is going to care at all about cheap startup cost (it will only do so if query_planner's tuple_fraction argument is greater than zero). If it isn't, we might as well discard paths immediately whose only advantage over others is cheap startup cost. This turns out to get rid of quite a lot of paths in complex queries --- I saw planner runtime reduction of more than a third on one large query. Since add_path isn't currently passed the PlannerInfo "root", the easiest way to tell it whether to do this was to add a bool flag to RelOptInfo. That's a bit redundant, since all relations in a given query level will have the same setting. But in the future it's possible that we'd refine the control decision to work on a per-relation basis, so this seems like a good arrangement anyway. Per my suggestion of a few months ago. |
13 years ago |
![]() |
e83bb10d6d |
Adjust definition of cheapest_total_path to work better with LATERAL.
In the initial cut at LATERAL, I kept the rule that cheapest_total_path was always unparameterized, which meant it had to be NULL if the relation has no unparameterized paths. It turns out to work much more nicely if we always have *some* path nominated as cheapest-total for each relation. In particular, let's still say it's the cheapest unparameterized path if there is one; if not, take the cheapest-total-cost path among those of the minimum available parameterization. (The first rule is actually a special case of the second.) This allows reversion of some temporary lobotomizations I'd put in place. In particular, the planner can now consider hash and merge joins for joins below a parameter-supplying nestloop, even if there aren't any unparameterized paths available. This should bring planning of LATERAL-containing queries to the same level as queries not using that feature. Along the way, simplify management of parameterized paths in add_path() and friends. In the original coding for parameterized paths in 9.2, I tried to minimize the logic changes in add_path(), so it just treated parameterization as yet another dimension of comparison for paths. We later made it ignore pathkeys (sort ordering) of parameterized paths, on the grounds that ordering isn't a useful property for the path on the inside of a nestloop, so we might as well get rid of useless parameterized paths as quickly as possible. But we didn't take that reasoning as far as we should have. Startup cost isn't a useful property inside a nestloop either, so add_path() ought to discount startup cost of parameterized paths as well. Having done that, the secondary sorting I'd implemented (in add_parameterized_path) is no longer needed --- any parameterized path that survives add_path() at all is worth considering at higher levels. So this should be a bit faster as well as simpler. |
13 years ago |
![]() |
9ff79b9d4e |
Fix up planner infrastructure to support LATERAL properly.
This patch takes care of a number of problems having to do with failure to choose valid join orders and incorrect handling of lateral references pulled up from subqueries. Notable changes: * Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to represent join ordering constraints created by lateral references. (I first considered extending the SpecialJoinInfo structure, but the semantics are different enough that a separate data structure seems better.) Extend join_is_legal() and related functions to prevent trying to form unworkable joins, and to ensure that we will consider joins that satisfy lateral references even if the joins would be clauseless. * Fill in the infrastructure needed for the last few types of relation scan paths to support parameterization. We'd have wanted this eventually anyway, but it is necessary now because a relation that gets pulled up out of a UNION ALL subquery may acquire a reltargetlist containing lateral references, meaning that its paths *have* to be parameterized whether or not we have any code that can push join quals down into the scan. * Compute data about lateral references early in query_planner(), and save in RelOptInfo nodes, to avoid repetitive calculations later. * Assorted corner-case bug fixes. There's probably still some bugs left, but this is a lot closer to being real than it was before. |
13 years ago |
![]() |
c1774d2c81 |
More fixes for planner's handling of LATERAL.
Re-allow subquery pullup for LATERAL subqueries, except when the subquery is below an outer join and contains lateral references to relations outside that outer join. If we pull up in such a case, we risk introducing lateral cross-references into outer joins' ON quals, which is something the code is entirely unprepared to cope with right now; and I'm not sure it'll ever be worth coping with. Support lateral refs in VALUES (this seems to be the only additional path type that needs such support as a consequence of re-allowing subquery pullup). Put in a slightly hacky fix for joinpath.c's refusal to consider parameterized join paths even when there cannot be any unparameterized ones. This was causing "could not devise a query plan for the given query" failures in queries involving more than two FROM items. Put in an even more hacky fix for distribute_qual_to_rels() being unhappy with join quals that contain references to rels outside their syntactic scope; which is to say, disable that test altogether. Need to think about how to preserve some sort of debugging cross-check here, while not expending more cycles than befits a debugging cross-check. |
13 years ago |
![]() |
5ebaaa4944 |
Implement SQL-standard LATERAL subqueries.
This patch implements the standard syntax of LATERAL attached to a sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM, since set-returning function calls are expected to be one of the principal use-cases. The main change here is a rewrite of the mechanism for keeping track of which relations are visible for column references while the FROM clause is being scanned. The parser "namespace" lists are no longer lists of bare RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE pointer as well as some visibility-controlling flags. Aside from supporting LATERAL correctly, this lets us get rid of the ancient hacks that required rechecking subqueries and JOIN/ON and function-in-FROM expressions for invalid references after they were initially parsed. Invalid column references are now always correctly detected on sight. In passing, remove assorted parser error checks that are now dead code by virtue of our having gotten rid of add_missing_from, as well as some comments that are obsolete for the same reason. (It was mainly add_missing_from that caused so much fudging here in the first place.) The planner support for this feature is very minimal, and will be improved in future patches. It works well enough for testing purposes, though. catversion bump forced due to new field in RangeTblEntry. |
13 years ago |