This makes it significantly easier to identify these lwlocks in
LWLOCK_STATS or Trace_lwlocks output. It's also arguably better
from a modularity standpoint, since lwlock.c no longer needs to
know anything about the LWLock needs of the higher-level SLRU
facility.
Ildus Kurbangaliev, reviewd by Álvaro Herrera and by me.
On insert the CheckForSerializableConflictIn() test was performed
before the page(s) which were going to be modified had been locked
(with an exclusive buffer content lock). If another process
acquired a relation SIReadLock on the heap and scanned to a page on
which an insert was going to occur before the page was so locked,
a rw-conflict would be missed, which could allow a serialization
anomaly to be missed. The window between the check and the page
lock was small, so the bug was generally not noticed unless there
was high concurrency with multiple processes inserting into the
same table.
This was reported by Peter Bailis as bug #11732, by Sean Chittenden
as bug #13667, and by others.
The race condition was eliminated in heap_insert() by moving the
check down below the acquisition of the buffer lock, which had been
the very next statement. Because of the loop locking and unlocking
multiple buffers in heap_multi_insert() a check was added after all
inserts were completed. The check before the start of the inserts
was left because it might avoid a large amount of work to detect a
serialization anomaly before performing the all of the inserts and
the related WAL logging.
While investigating this bug, other SSI bugs which were even harder
to hit in practice were noticed and fixed, an unnecessary check
(covered by another check, so redundant) was removed from
heap_update(), and comments were improved.
Back-patch to all supported branches.
Kevin Grittner and Thomas Munro
Use "a" and "an" correctly, mostly in comments. Two error messages were
also fixed (they were just elogs, so no translation work required). Two
function comments in pg_proc.h were also fixed. Etsuro Fujita reported one
of these, but I found a lot more with grep.
Also fix a few other typos spotted while grepping for the a/an typos.
For example, "consists out of ..." -> "consists of ...". Plus a "though"/
"through" mixup reported by Euler Taveira.
Many of these typos were in old code, which would be nice to backpatch to
make future backpatching easier. But much of the code was new, and I didn't
feel like crafting separate patches for each branch. So no backpatching.
This does four basic things. First, it provides convenience routines
to coordinate the startup and shutdown of parallel workers. Second,
it synchronizes various pieces of state (e.g. GUCs, combo CID
mappings, transaction snapshot) from the parallel group leader to the
worker processes. Third, it prohibits various operations that would
result in unsafe changes to that state while parallelism is active.
Finally, it propagates events that would result in an ErrorResponse,
NoticeResponse, or NotifyResponse message being sent to the client
from the parallel workers back to the master, from which they can then
be sent on to the client.
Robert Haas, Amit Kapila, Noah Misch, Rushabh Lathia, Jeevan Chalke.
Suggestions and review from Andres Freund, Heikki Linnakangas, Noah
Misch, Simon Riggs, Euler Taveira, and Jim Nasby.
Previously, if you wanted anything besides C-string hash keys, you had to
specify a custom hashing function to hash_create(). Nearly all such
callers were specifying tag_hash or oid_hash; which is tedious, and rather
error-prone, since a caller could easily miss the opportunity to optimize
by using hash_uint32 when appropriate. Replace this with a design whereby
callers using simple binary-data keys just specify HASH_BLOBS and don't
need to mess with specific support functions. hash_create() itself will
take care of optimizing when the key size is four bytes.
This nets out saving a few hundred bytes of code space, and offers
a measurable performance improvement in tidbitmap.c (which was not
exploiting the opportunity to use hash_uint32 for its 4-byte keys).
There might be some wins elsewhere too, I didn't analyze closely.
In future we could look into offering a similar optimized hashing function
for 8-byte keys. Under this design that could be done in a centralized
and machine-independent fashion, whereas getting it right for keys of
platform-dependent sizes would've been notationally painful before.
For the moment, the old way still works fine, so as not to break source
code compatibility for loadable modules. Eventually we might want to
remove tag_hash and friends from the exported API altogether, since there's
no real need for them to be explicitly referenced from outside dynahash.c.
Teodor Sigaev and Tom Lane
xlog.c is huge, this makes it a little bit smaller, which is nice. Functions
related to putting together the WAL record are in xloginsert.c, and the
lower level stuff for managing WAL buffers and such are in xlog.c.
Also move the definition of XLogRecord to a separate header file. This
causes churn in the #includes of all the files that write WAL records, and
redo routines, but it avoids pulling in xlog.h into most places.
Reviewed by Michael Paquier, Alvaro Herrera, Andres Freund and Amit Kapila.
This makes it possible to store lwlocks as part of some other data
structure in the main shared memory segment, or in a dynamic shared
memory segment. There is still a main LWLock array and this patch does
not move anything out of it, but it provides necessary infrastructure
for doing that in the future.
This change is likely to increase the size of LWLockPadded on some
platforms, especially 32-bit platforms where it was previously only
16 bytes.
Patch by me. Review by Andres Freund and KaiGai Kohei.
Since C99, it's been standard for printf and friends to accept a "z" size
modifier, meaning "whatever size size_t has". Up to now we've generally
dealt with printing size_t values by explicitly casting them to unsigned
long and using the "l" modifier; but this is really the wrong thing on
platforms where pointers are wider than longs (such as Win64). So let's
start using "z" instead. To ensure we can do that on all platforms, teach
src/port/snprintf.c to understand "z", and add a configure test to force
use of that implementation when the platform's version doesn't handle "z".
Having done that, modify a bunch of places that were using the
unsigned-long hack to use "z" instead. This patch doesn't pretend to have
gotten everyplace that could benefit, but it catches many of them. I made
an effort in particular to ensure that all uses of the same error message
text were updated together, so as not to increase the number of
translatable strings.
It's possible that this change will result in format-string warnings from
pre-C99 compilers. We might have to reconsider if there are any popular
compilers that will warn about this; but let's start by seeing what the
buildfarm thinks.
Andres Freund, with a little additional work by me
1. In heap_hot_search_buffer(), the PredicateLockTuple() call is passed
wrong offset number. heapTuple->t_self is set to the tid of the first
tuple in the chain that's visited, not the one actually being read.
2. CheckForSerializableConflictIn() uses the tuple's t_ctid field
instead of t_self to check for exiting predicate locks on the tuple. If
the tuple was updated, but the updater rolled back, t_ctid points to the
aborted dead tuple.
Reported by Hannu Krosing. Backpatch to 9.1.
If a tuple was frozen while its predicate locks mattered,
read-write dependencies could be missed, resulting in failure to
detect conflicts which could lead to anomalies in committed
serializable transactions.
This field was added to the tag when we still thought that it was
necessary to carry locks forward to a new version of an updated
row. That was later proven to be unnecessary, which allowed
simplification of the code, but elimination of xmin from the tag
was missed at the time.
Per report and analysis by Heikki Linnakangas.
Backpatch to 9.1.
Previously, these functions took a HeapTupleHeader, but upcoming
patches for logical replication will introduce new a new snapshot
type under which the tuple's TID will be used to lookup (CMIN, CMAX)
for visibility determination purposes. This makes that information
available. Code churn is minimal since HeapTupleSatisfiesVisibility
took the HeapTuple anyway, and deferenced it before calling the
satisfies function.
Independently of logical replication, this allows t_tableOid and
t_self to be cross-checked via assertions in tqual.c. This seems
like a useful way to make sure that all callers are setting these
values properly, which has been previously put forward as
desirable.
Andres Freund, reviewed by Álvaro Herrera
A materialized view has a rule just like a view and a heap and
other physical properties like a table. The rule is only used to
populate the table, references in queries refer to the
materialized data.
This is a minimal implementation, but should still be useful in
many cases. Currently data is only populated "on demand" by the
CREATE MATERIALIZED VIEW and REFRESH MATERIALIZED VIEW statements.
It is expected that future releases will add incremental updates
with various timings, and that a more refined concept of defining
what is "fresh" data will be developed. At some point it may even
be possible to have queries use a materialized in place of
references to underlying tables, but that requires the other
above-mentioned features to be working first.
Much of the documentation work by Robert Haas.
Review by Noah Misch, Thom Brown, Robert Haas, Marko Tiikkaja
Security review by KaiGai Kohei, with a decision on how best to
implement sepgsql still pending.
This patch introduces two additional lock modes for tuples: "SELECT FOR
KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each
other, in contrast with already existing "SELECT FOR SHARE" and "SELECT
FOR UPDATE". UPDATE commands that do not modify the values stored in
the columns that are part of the key of the tuple now grab a SELECT FOR
NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently
with tuple locks of the FOR KEY SHARE variety.
Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this
means the concurrency improvement applies to them, which is the whole
point of this patch.
The added tuple lock semantics require some rejiggering of the multixact
module, so that the locking level that each transaction is holding can
be stored alongside its Xid. Also, multixacts now need to persist
across server restarts and crashes, because they can now represent not
only tuple locks, but also tuple updates. This means we need more
careful tracking of lifetime of pg_multixact SLRU files; since they now
persist longer, we require more infrastructure to figure out when they
can be removed. pg_upgrade also needs to be careful to copy
pg_multixact files over from the old server to the new, or at least part
of multixact.c state, depending on the versions of the old and new
servers.
Tuple time qualification rules (HeapTupleSatisfies routines) need to be
careful not to consider tuples with the "is multi" infomask bit set as
being only locked; they might need to look up MultiXact values (i.e.
possibly do pg_multixact I/O) to find out the Xid that updated a tuple,
whereas they previously were assured to only use information readily
available from the tuple header. This is considered acceptable, because
the extra I/O would involve cases that would previously cause some
commands to block waiting for concurrent transactions to finish.
Another important change is the fact that locking tuples that have
previously been updated causes the future versions to be marked as
locked, too; this is essential for correctness of foreign key checks.
This causes additional WAL-logging, also (there was previously a single
WAL record for a locked tuple; now there are as many as updated copies
of the tuple there exist.)
With all this in place, contention related to tuples being checked by
foreign key rules should be much reduced.
As a bonus, the old behavior that a subtransaction grabbing a stronger
tuple lock than the parent (sub)transaction held on a given tuple and
later aborting caused the weaker lock to be lost, has been fixed.
Many new spec files were added for isolation tester framework, to ensure
overall behavior is sane. There's probably room for several more tests.
There were several reviewers of this patch; in particular, Noah Misch
and Andres Freund spent considerable time in it. Original idea for the
patch came from Simon Riggs, after a problem report by Joel Jacobson.
Most code is from me, with contributions from Marti Raudsepp, Alexander
Shulgin, Noah Misch and Andres Freund.
This patch was discussed in several pgsql-hackers threads; the most
important start at the following message-ids:
AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com1290721684-sup-3951@alvh.no-ip.org1294953201-sup-2099@alvh.no-ip.org1320343602-sup-2290@alvh.no-ip.org1339690386-sup-8927@alvh.no-ip.org4FE5FF020200002500048A3D@gw.wicourts.gov4FEAB90A0200002500048B7D@gw.wicourts.gov
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
The GUC check hooks for transaction_read_only and transaction_isolation
tried to check RecoveryInProgress(), so as to disallow setting read/write
mode or serializable isolation level (respectively) in hot standby
sessions. However, GUC check hooks can be called in many situations where
we're not connected to shared memory at all, resulting in a crash in
RecoveryInProgress(). Among other cases, this results in EXEC_BACKEND
builds crashing during child process start if default_transaction_isolation
is serializable, as reported by Heikki Linnakangas. Protect those calls
by silently allowing any setting when not inside a transaction; which is
okay anyway since these GUCs are always reset at start of transaction.
Also, add a check to GetSerializableTransactionSnapshot() to complain
if we are in hot standby. We need that check despite the one in
check_XactIsoLevel() because default_transaction_isolation could be
serializable. We don't want to complain any sooner than this in such
cases, since that would prevent running transactions at all in such a
state; but a transaction can be run, if SET TRANSACTION ISOLATION is done
before setting a snapshot. Per report some months ago from Robert Haas.
Back-patch to 9.1, since these problems were introduced by the SSI patch.
Kevin Grittner and Tom Lane, with ideas from Heikki Linnakangas
For those variables only used when asserts are enabled, use a new
macro PG_USED_FOR_ASSERTS_ONLY, which expands to
__attribute__((unused)) when asserts are not enabled.
A prepared transaction can get new conflicts in and out after preparing, so
we cannot rely on the in- and out-flags stored in the statefile at prepare-
time. As a quick fix, make the conservative assumption that after a restart,
all prepared transactions are considered to have both in- and out-conflicts.
That can lead to unnecessary rollbacks after a crash, but that shouldn't be
a big problem in practice; you don't want prepared transactions to hang
around for a long time anyway.
Dan Ports
When the only remaining active transactions are READ ONLY, we do a "partial
cleanup" of committed transactions because certain types of conflicts
aren't possible anymore. For committed r/w transactions, we release the
SIREAD locks but keep the SERIALIZABLEXACT. However, for committed r/o
transactions, we can go further and release the SERIALIZABLEXACT too. The
problem was with the latter case: we were returning the SERIALIZABLEXACT to
the free list without removing it from the finished list.
The only real change in the patch is the SHMQueueDelete line, but I also
reworked some of the surrounding code to make it obvious that r/o and r/w
transactions are handled differently -- the existing code felt a bit too
clever.
Dan Ports
A transaction can export a snapshot with pg_export_snapshot(), and then
others can import it with SET TRANSACTION SNAPSHOT. The data does not
leave the server so there are not security issues. A snapshot can only
be imported while the exporting transaction is still running, and there
are some other restrictions.
I'm not totally convinced that we've covered all the bases for SSI (true
serializable) mode, but it works fine for lesser isolation modes.
Joachim Wieland, reviewed by Marko Tiikkaja, and rather heavily modified
by Tom Lane
In REPEATABLE READ (nee SERIALIZABLE) mode, an attempt to do
GetTransactionSnapshot() between AbortTransaction and CleanupTransaction
failed, because GetTransactionSnapshot would recompute the transaction
snapshot (which is already wrong, given the isolation mode) and then
re-register it in the TopTransactionResourceOwner, leading to an Assert
because the TopTransactionResourceOwner should be empty of resources after
AbortTransaction. This is the root cause of bug #6218 from Yamamoto
Takashi. While changing plancache.c to avoid requesting a snapshot when
handling a ROLLBACK masks the problem, I think this is really a snapmgr.c
bug: it's lower-level than the resource manager mechanism and should not be
shutting itself down before we unwind resource manager resources. However,
just postponing the release of the transaction snapshot until cleanup time
didn't work because of the circular dependency with
TopTransactionResourceOwner. Fix by managing the internal reference to
that snapshot manually instead of depending on TopTransactionResourceOwner.
This saves a few cycles as well as making the module layering more
straightforward. predicate.c's dependencies on TopTransactionResourceOwner
go away too.
I think this is a longstanding bug, but there's no evidence that it's more
than a latent bug, so it doesn't seem worth any risk of back-patching.
This makes it clearer that the error message is perhaps not supposed
to be understood by users, and it also makes it somewhat clearer that
it was not accidentally omitted from translation.
Idea from Heikki Linnakangas, except that we don't mark "Reason code"
for translation at this point, because that would make the
implementation too cumbersome.
on the finished list, and we shouldn't flag it as a potential conflict
if so. We can also skip adding a doomed transaction to the list of
possible conflicts because we know it won't commit.
Dan Ports and Kevin Grittner.
transactions might not match the order the work done in those transactions
become visible to others. The logic in SSI, however, assumed that it does.
Fix that by having two sequence numbers for each serializable transaction,
one taken before a transaction becomes visible to others, and one after it.
This is easier than trying to make the the transition totally atomic, which
would require holding ProcArrayLock and SerializableXactHashLock at the same
time. By using prepareSeqNo instead of commitSeqNo in a few places where
commit sequence numbers are compared, we can make those comparisons err on
the safe side when we don't know for sure which committed first.
Per analysis by Kevin Grittner and Dan Ports, but this approach to fix it
is different from the original patch.
The value when BLCKSZ = 8192 is unchanged, but with larger-than-normal
block sizes we might need to crank things back a bit, as we'll have
more entries per page than normal in that case.
Kevin Grittner
If there's a dangerous structure T0 ---> T1 ---> T2, and T2 commits first,
we need to abort something. If T2 commits before both conflicts appear,
then it should be caught by OnConflict_CheckForSerializationFailure. If
both conflicts appear before T2 commits, it should be caught by
PreCommit_CheckForSerializationFailure. But that is actually run when
T2 *prepares*. Fix that in OnConflict_CheckForSerializationFailure, by
treating a prepared T2 as if it committed already.
This is mostly a problem for prepared transactions, which are in prepared
state for some time, but also for regular transactions because they also go
through the prepared state in the SSI code for a short moment when they're
committed.
Kevin Grittner and Dan Ports
s/const//g wasn't exactly what I was suggesting here ... parameter
declarations of the form "const structtype *param" are good and useful,
so put those occurrences back. Likewise, avoid casting away the const
in a "const void *" parameter.
As Tom Lane pointed out, "const Relation foo" doesn't guarantee that you
can't modify the data the "foo" pointer points to. It just means that you
can't change the pointer to point to something else within the function,
which is not very useful.
already been marked as PREPARED cannot be killed. Kill the current
transaction instead.
One of the prepared_xacts regression tests actually hits this bug. I
removed the anomaly from the duplicate-gids test so that it fails in the
intended way, and added a new test to check serialization failures with
a prepared transaction.
Dan Ports
MARKED_FOR_DEATH flags into one. We still need the ROLLED_BACK flag to
mark transactions that are in the process of being rolled back. To be
precise, ROLLED_BACK now means that a transaction has already been
discounted from the count of transactions with the oldest xmin, but not
yet removed from the list of active transactions.
Dan Ports
the marked-for-death flag. It was only set for a fleeting moment while a
transaction was being cleaned up at rollback. All the places that checked
for the rolled-back flag should also check the marked-for-death flag, as
both flags mean that the transaction will roll back. I also renamed the
marked-for-death into "doomed", which is a lot shorter name.
snapshots, like in REINDEX, are basically non-transactional operations. The
DDL operation itself might participate in SSI, but there's separate
functions for that.
Kevin Grittner and Dan Ports, with some changes by me.
Even if a flag is modified only by the backend owning the transaction, it's
not safe to modify it without a lock. Another backend might be setting or
clearing a different flag in the flags field concurrently, and that
operation might be lost because setting or clearing a bit in a word is not
atomic.
Make did-write flag a simple backend-private boolean variable, because it
was only set or tested in the owning backend (except when committing a
prepared transaction, but it's not worthwhile to optimize for the case of a
read-only prepared transaction). This also eliminates the need to add
locking where that flag is set.
Also, set the did-write flag when doing DDL operations like DROP TABLE or
TRUNCATE -- that was missed earlier.