You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
postgres/src/backend/executor/execReplication.c

1129 lines
33 KiB

/*-------------------------------------------------------------------------
*
* execReplication.c
* miscellaneous executor routines for logical replication
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/execReplication.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/commit_ts.h"
#include "access/genam.h"
#include "access/gist.h"
#include "access/relscan.h"
#include "access/tableam.h"
#include "access/transam.h"
#include "access/xact.h"
#include "access/heapam.h"
#include "catalog/pg_am_d.h"
#include "commands/trigger.h"
#include "executor/executor.h"
#include "executor/nodeModifyTable.h"
#include "replication/conflict.h"
#include "replication/logicalrelation.h"
#include "storage/lmgr.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
static bool tuples_equal(TupleTableSlot *slot1, TupleTableSlot *slot2,
TypeCacheEntry **eq, Bitmapset *columns);
/*
* Setup a ScanKey for a search in the relation 'rel' for a tuple 'key' that
* is setup to match 'rel' (*NOT* idxrel!).
*
* Returns how many columns to use for the index scan.
*
* This is not generic routine, idxrel must be PK, RI, or an index that can be
* used for REPLICA IDENTITY FULL table. See FindUsableIndexForReplicaIdentityFull()
* for details.
*
* By definition, replication identity of a rel meets all limitations associated
* with that. Note that any other index could also meet these limitations.
*/
static int
build_replindex_scan_key(ScanKey skey, Relation rel, Relation idxrel,
TupleTableSlot *searchslot)
{
int index_attoff;
int skey_attoff = 0;
Datum indclassDatum;
oidvector *opclass;
int2vector *indkey = &idxrel->rd_index->indkey;
indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, idxrel->rd_indextuple,
Anum_pg_index_indclass);
opclass = (oidvector *) DatumGetPointer(indclassDatum);
/* Build scankey for every non-expression attribute in the index. */
for (index_attoff = 0; index_attoff < IndexRelationGetNumberOfKeyAttributes(idxrel);
index_attoff++)
{
Oid operator;
Oid optype;
Oid opfamily;
RegProcedure regop;
int table_attno = indkey->values[index_attoff];
StrategyNumber eq_strategy;
if (!AttributeNumberIsValid(table_attno))
{
/*
* XXX: Currently, we don't support expressions in the scan key,
* see code below.
*/
continue;
}
/*
* Load the operator info. We need this to get the equality operator
* function for the scan key.
*/
optype = get_opclass_input_type(opclass->values[index_attoff]);
opfamily = get_opclass_family(opclass->values[index_attoff]);
eq_strategy = IndexAmTranslateCompareType(COMPARE_EQ, idxrel->rd_rel->relam, opfamily, false);
operator = get_opfamily_member(opfamily, optype,
optype,
eq_strategy);
if (!OidIsValid(operator))
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
eq_strategy, optype, optype, opfamily);
regop = get_opcode(operator);
/* Initialize the scankey. */
ScanKeyInit(&skey[skey_attoff],
index_attoff + 1,
eq_strategy,
regop,
searchslot->tts_values[table_attno - 1]);
skey[skey_attoff].sk_collation = idxrel->rd_indcollation[index_attoff];
/* Check for null value. */
if (searchslot->tts_isnull[table_attno - 1])
skey[skey_attoff].sk_flags |= (SK_ISNULL | SK_SEARCHNULL);
skey_attoff++;
}
/* There must always be at least one attribute for the index scan. */
Assert(skey_attoff > 0);
return skey_attoff;
}
/*
* Helper function to check if it is necessary to re-fetch and lock the tuple
* due to concurrent modifications. This function should be called after
* invoking table_tuple_lock.
*/
static bool
should_refetch_tuple(TM_Result res, TM_FailureData *tmfd)
{
bool refetch = false;
switch (res)
{
case TM_Ok:
break;
case TM_Updated:
/* XXX: Improve handling here */
if (ItemPointerIndicatesMovedPartitions(&tmfd->ctid))
ereport(LOG,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("tuple to be locked was already moved to another partition due to concurrent update, retrying")));
else
ereport(LOG,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("concurrent update, retrying")));
refetch = true;
break;
case TM_Deleted:
/* XXX: Improve handling here */
ereport(LOG,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("concurrent delete, retrying")));
refetch = true;
break;
case TM_Invisible:
elog(ERROR, "attempted to lock invisible tuple");
break;
default:
elog(ERROR, "unexpected table_tuple_lock status: %u", res);
break;
}
return refetch;
}
/*
* Search the relation 'rel' for tuple using the index.
*
* If a matching tuple is found, lock it with lockmode, fill the slot with its
* contents, and return true. Return false otherwise.
*/
bool
RelationFindReplTupleByIndex(Relation rel, Oid idxoid,
LockTupleMode lockmode,
TupleTableSlot *searchslot,
TupleTableSlot *outslot)
{
ScanKeyData skey[INDEX_MAX_KEYS];
int skey_attoff;
IndexScanDesc scan;
SnapshotData snap;
TransactionId xwait;
Relation idxrel;
bool found;
TypeCacheEntry **eq = NULL;
bool isIdxSafeToSkipDuplicates;
/* Open the index. */
idxrel = index_open(idxoid, RowExclusiveLock);
isIdxSafeToSkipDuplicates = (GetRelationIdentityOrPK(rel) == idxoid);
InitDirtySnapshot(snap);
/* Build scan key. */
skey_attoff = build_replindex_scan_key(skey, rel, idxrel, searchslot);
/* Start an index scan. */
scan = index_beginscan(rel, idxrel, &snap, NULL, skey_attoff, 0);
retry:
found = false;
index_rescan(scan, skey, skey_attoff, NULL, 0);
/* Try to find the tuple */
while (index_getnext_slot(scan, ForwardScanDirection, outslot))
{
/*
* Avoid expensive equality check if the index is primary key or
* replica identity index.
*/
if (!isIdxSafeToSkipDuplicates)
{
if (eq == NULL)
eq = palloc0(sizeof(*eq) * outslot->tts_tupleDescriptor->natts);
if (!tuples_equal(outslot, searchslot, eq, NULL))
continue;
}
ExecMaterializeSlot(outslot);
xwait = TransactionIdIsValid(snap.xmin) ?
snap.xmin : snap.xmax;
/*
* If the tuple is locked, wait for locking transaction to finish and
* retry.
*/
if (TransactionIdIsValid(xwait))
{
XactLockTableWait(xwait, NULL, NULL, XLTW_None);
goto retry;
}
/* Found our tuple and it's not locked */
found = true;
break;
}
/* Found tuple, try to lock it in the lockmode. */
if (found)
{
TM_FailureData tmfd;
TM_Result res;
PushActiveSnapshot(GetLatestSnapshot());
res = table_tuple_lock(rel, &(outslot->tts_tid), GetActiveSnapshot(),
outslot,
GetCurrentCommandId(false),
lockmode,
LockWaitBlock,
0 /* don't follow updates */ ,
&tmfd);
PopActiveSnapshot();
if (should_refetch_tuple(res, &tmfd))
goto retry;
}
index_endscan(scan);
/* Don't release lock until commit. */
index_close(idxrel, NoLock);
return found;
}
/*
* Compare the tuples in the slots by checking if they have equal values.
*
* If 'columns' is not null, only the columns specified within it will be
* considered for the equality check, ignoring all other columns.
*/
static bool
tuples_equal(TupleTableSlot *slot1, TupleTableSlot *slot2,
TypeCacheEntry **eq, Bitmapset *columns)
{
int attrnum;
Assert(slot1->tts_tupleDescriptor->natts ==
slot2->tts_tupleDescriptor->natts);
slot_getallattrs(slot1);
slot_getallattrs(slot2);
/* Check equality of the attributes. */
for (attrnum = 0; attrnum < slot1->tts_tupleDescriptor->natts; attrnum++)
{
Form_pg_attribute att;
TypeCacheEntry *typentry;
att = TupleDescAttr(slot1->tts_tupleDescriptor, attrnum);
/*
* Ignore dropped and generated columns as the publisher doesn't send
* those
*/
if (att->attisdropped || att->attgenerated)
continue;
/*
* Ignore columns that are not listed for checking.
*/
if (columns &&
!bms_is_member(att->attnum - FirstLowInvalidHeapAttributeNumber,
columns))
continue;
/*
* If one value is NULL and other is not, then they are certainly not
* equal
*/
if (slot1->tts_isnull[attrnum] != slot2->tts_isnull[attrnum])
return false;
/*
* If both are NULL, they can be considered equal.
*/
if (slot1->tts_isnull[attrnum] || slot2->tts_isnull[attrnum])
continue;
typentry = eq[attrnum];
if (typentry == NULL)
{
typentry = lookup_type_cache(att->atttypid,
TYPECACHE_EQ_OPR_FINFO);
if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an equality operator for type %s",
format_type_be(att->atttypid))));
eq[attrnum] = typentry;
}
if (!DatumGetBool(FunctionCall2Coll(&typentry->eq_opr_finfo,
att->attcollation,
slot1->tts_values[attrnum],
slot2->tts_values[attrnum])))
return false;
}
return true;
}
/*
* Search the relation 'rel' for tuple using the sequential scan.
*
* If a matching tuple is found, lock it with lockmode, fill the slot with its
* contents, and return true. Return false otherwise.
*
* Note that this stops on the first matching tuple.
*
* This can obviously be quite slow on tables that have more than few rows.
*/
bool
RelationFindReplTupleSeq(Relation rel, LockTupleMode lockmode,
TupleTableSlot *searchslot, TupleTableSlot *outslot)
{
TupleTableSlot *scanslot;
TableScanDesc scan;
SnapshotData snap;
TypeCacheEntry **eq;
TransactionId xwait;
bool found;
TupleDesc desc PG_USED_FOR_ASSERTS_ONLY = RelationGetDescr(rel);
Assert(equalTupleDescs(desc, outslot->tts_tupleDescriptor));
eq = palloc0(sizeof(*eq) * outslot->tts_tupleDescriptor->natts);
/* Start a heap scan. */
InitDirtySnapshot(snap);
scan = table_beginscan(rel, &snap, 0, NULL);
scanslot = table_slot_create(rel, NULL);
retry:
found = false;
table_rescan(scan, NULL);
/* Try to find the tuple */
while (table_scan_getnextslot(scan, ForwardScanDirection, scanslot))
{
if (!tuples_equal(scanslot, searchslot, eq, NULL))
continue;
found = true;
ExecCopySlot(outslot, scanslot);
xwait = TransactionIdIsValid(snap.xmin) ?
snap.xmin : snap.xmax;
/*
* If the tuple is locked, wait for locking transaction to finish and
* retry.
*/
if (TransactionIdIsValid(xwait))
{
XactLockTableWait(xwait, NULL, NULL, XLTW_None);
goto retry;
}
/* Found our tuple and it's not locked */
break;
}
/* Found tuple, try to lock it in the lockmode. */
if (found)
{
TM_FailureData tmfd;
TM_Result res;
PushActiveSnapshot(GetLatestSnapshot());
res = table_tuple_lock(rel, &(outslot->tts_tid), GetActiveSnapshot(),
outslot,
GetCurrentCommandId(false),
lockmode,
LockWaitBlock,
0 /* don't follow updates */ ,
&tmfd);
PopActiveSnapshot();
if (should_refetch_tuple(res, &tmfd))
goto retry;
}
table_endscan(scan);
ExecDropSingleTupleTableSlot(scanslot);
return found;
}
/*
* Build additional index information necessary for conflict detection.
*/
static void
BuildConflictIndexInfo(ResultRelInfo *resultRelInfo, Oid conflictindex)
{
for (int i = 0; i < resultRelInfo->ri_NumIndices; i++)
{
Relation indexRelation = resultRelInfo->ri_IndexRelationDescs[i];
IndexInfo *indexRelationInfo = resultRelInfo->ri_IndexRelationInfo[i];
if (conflictindex != RelationGetRelid(indexRelation))
continue;
/*
* This Assert will fail if BuildSpeculativeIndexInfo() is called
* twice for the given index.
*/
Assert(indexRelationInfo->ii_UniqueOps == NULL);
BuildSpeculativeIndexInfo(indexRelation, indexRelationInfo);
}
}
/*
* If the tuple is recently dead and was deleted by a transaction with a newer
* commit timestamp than previously recorded, update the associated transaction
* ID, commit time, and origin. This helps ensure that conflict detection uses
* the most recent and relevant deletion metadata.
*/
static void
update_most_recent_deletion_info(TupleTableSlot *scanslot,
TransactionId oldestxmin,
TransactionId *delete_xid,
TimestampTz *delete_time,
RepOriginId *delete_origin)
{
BufferHeapTupleTableSlot *hslot;
HeapTuple tuple;
Buffer buf;
bool recently_dead = false;
TransactionId xmax;
TimestampTz localts;
RepOriginId localorigin;
hslot = (BufferHeapTupleTableSlot *) scanslot;
tuple = ExecFetchSlotHeapTuple(scanslot, false, NULL);
buf = hslot->buffer;
LockBuffer(buf, BUFFER_LOCK_SHARE);
/*
* We do not consider HEAPTUPLE_DEAD status because it indicates either
* tuples whose inserting transaction was aborted (meaning there is no
* commit timestamp or origin), or tuples deleted by a transaction older
* than oldestxmin, making it safe to ignore them during conflict
* detection (See comments atop worker.c for details).
*/
if (HeapTupleSatisfiesVacuum(tuple, oldestxmin, buf) == HEAPTUPLE_RECENTLY_DEAD)
recently_dead = true;
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
if (!recently_dead)
return;
xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
if (!TransactionIdIsValid(xmax))
return;
/* Select the dead tuple with the most recent commit timestamp */
if (TransactionIdGetCommitTsData(xmax, &localts, &localorigin) &&
TimestampDifferenceExceeds(*delete_time, localts, 0))
{
*delete_xid = xmax;
*delete_time = localts;
*delete_origin = localorigin;
}
}
/*
* Searches the relation 'rel' for the most recently deleted tuple that matches
* the values in 'searchslot' and is not yet removable by VACUUM. The function
* returns the transaction ID, origin, and commit timestamp of the transaction
* that deleted this tuple.
*
* 'oldestxmin' acts as a cutoff transaction ID. Tuples deleted by transactions
* with IDs >= 'oldestxmin' are considered recently dead and are eligible for
* conflict detection.
*
* Instead of stopping at the first match, we scan all matching dead tuples to
* identify most recent deletion. This is crucial because only the latest
* deletion is relevant for resolving conflicts.
*
* For example, consider a scenario on the subscriber where a row is deleted,
* re-inserted, and then deleted again only on the subscriber:
*
* - (pk, 1) - deleted at 9:00,
* - (pk, 1) - deleted at 9:02,
*
* Now, a remote update arrives: (pk, 1) -> (pk, 2), timestamped at 9:01.
*
* If we mistakenly return the older deletion (9:00), the system may wrongly
* apply the remote update using a last-update-wins strategy. Instead, we must
* recognize the more recent deletion at 9:02 and skip the update. See
* comments atop worker.c for details. Note, as of now, conflict resolution
* is not implemented. Consequently, the system may incorrectly report the
* older tuple as the conflicted one, leading to misleading results.
*
* The commit timestamp of the deleting transaction is used to determine which
* tuple was deleted most recently.
*/
bool
RelationFindDeletedTupleInfoSeq(Relation rel, TupleTableSlot *searchslot,
TransactionId oldestxmin,
TransactionId *delete_xid,
RepOriginId *delete_origin,
TimestampTz *delete_time)
{
TupleTableSlot *scanslot;
TableScanDesc scan;
TypeCacheEntry **eq;
Bitmapset *indexbitmap;
TupleDesc desc PG_USED_FOR_ASSERTS_ONLY = RelationGetDescr(rel);
Assert(equalTupleDescs(desc, searchslot->tts_tupleDescriptor));
*delete_xid = InvalidTransactionId;
*delete_origin = InvalidRepOriginId;
*delete_time = 0;
/*
* If the relation has a replica identity key or a primary key that is
* unusable for locating deleted tuples (see
* IsIndexUsableForFindingDeletedTuple), a full table scan becomes
* necessary. In such cases, comparing the entire tuple is not required,
* since the remote tuple might not include all column values. Instead,
* the indexed columns alone are sufficient to identify the target tuple
* (see logicalrep_rel_mark_updatable).
*/
indexbitmap = RelationGetIndexAttrBitmap(rel,
INDEX_ATTR_BITMAP_IDENTITY_KEY);
/* fallback to PK if no replica identity */
if (!indexbitmap)
indexbitmap = RelationGetIndexAttrBitmap(rel,
INDEX_ATTR_BITMAP_PRIMARY_KEY);
eq = palloc0(sizeof(*eq) * searchslot->tts_tupleDescriptor->natts);
/*
* Start a heap scan using SnapshotAny to identify dead tuples that are
* not visible under a standard MVCC snapshot. Tuples from transactions
* not yet committed or those just committed prior to the scan are
* excluded in update_most_recent_deletion_info().
*/
scan = table_beginscan(rel, SnapshotAny, 0, NULL);
scanslot = table_slot_create(rel, NULL);
table_rescan(scan, NULL);
/* Try to find the tuple */
while (table_scan_getnextslot(scan, ForwardScanDirection, scanslot))
{
if (!tuples_equal(scanslot, searchslot, eq, indexbitmap))
continue;
update_most_recent_deletion_info(scanslot, oldestxmin, delete_xid,
delete_time, delete_origin);
}
table_endscan(scan);
ExecDropSingleTupleTableSlot(scanslot);
return *delete_time != 0;
}
/*
* Similar to RelationFindDeletedTupleInfoSeq() but using index scan to locate
* the deleted tuple.
*/
bool
RelationFindDeletedTupleInfoByIndex(Relation rel, Oid idxoid,
TupleTableSlot *searchslot,
TransactionId oldestxmin,
TransactionId *delete_xid,
RepOriginId *delete_origin,
TimestampTz *delete_time)
{
Relation idxrel;
ScanKeyData skey[INDEX_MAX_KEYS];
int skey_attoff;
IndexScanDesc scan;
TupleTableSlot *scanslot;
TypeCacheEntry **eq = NULL;
bool isIdxSafeToSkipDuplicates;
TupleDesc desc PG_USED_FOR_ASSERTS_ONLY = RelationGetDescr(rel);
Assert(equalTupleDescs(desc, searchslot->tts_tupleDescriptor));
Assert(OidIsValid(idxoid));
*delete_xid = InvalidTransactionId;
*delete_time = 0;
*delete_origin = InvalidRepOriginId;
isIdxSafeToSkipDuplicates = (GetRelationIdentityOrPK(rel) == idxoid);
scanslot = table_slot_create(rel, NULL);
idxrel = index_open(idxoid, RowExclusiveLock);
/* Build scan key. */
skey_attoff = build_replindex_scan_key(skey, rel, idxrel, searchslot);
/*
* Start an index scan using SnapshotAny to identify dead tuples that are
* not visible under a standard MVCC snapshot. Tuples from transactions
* not yet committed or those just committed prior to the scan are
* excluded in update_most_recent_deletion_info().
*/
scan = index_beginscan(rel, idxrel, SnapshotAny, NULL, skey_attoff, 0);
index_rescan(scan, skey, skey_attoff, NULL, 0);
/* Try to find the tuple */
while (index_getnext_slot(scan, ForwardScanDirection, scanslot))
{
/*
* Avoid expensive equality check if the index is primary key or
* replica identity index.
*/
if (!isIdxSafeToSkipDuplicates)
{
if (eq == NULL)
eq = palloc0(sizeof(*eq) * scanslot->tts_tupleDescriptor->natts);
if (!tuples_equal(scanslot, searchslot, eq, NULL))
continue;
}
update_most_recent_deletion_info(scanslot, oldestxmin, delete_xid,
delete_time, delete_origin);
}
index_endscan(scan);
index_close(idxrel, NoLock);
ExecDropSingleTupleTableSlot(scanslot);
return *delete_time != 0;
}
/*
* Find the tuple that violates the passed unique index (conflictindex).
*
* If the conflicting tuple is found return true, otherwise false.
*
* We lock the tuple to avoid getting it deleted before the caller can fetch
* the required information. Note that if the tuple is deleted before a lock
* is acquired, we will retry to find the conflicting tuple again.
*/
static bool
FindConflictTuple(ResultRelInfo *resultRelInfo, EState *estate,
Oid conflictindex, TupleTableSlot *slot,
TupleTableSlot **conflictslot)
{
Relation rel = resultRelInfo->ri_RelationDesc;
ItemPointerData conflictTid;
TM_FailureData tmfd;
TM_Result res;
*conflictslot = NULL;
/*
* Build additional information required to check constraints violations.
* See check_exclusion_or_unique_constraint().
*/
BuildConflictIndexInfo(resultRelInfo, conflictindex);
retry:
if (ExecCheckIndexConstraints(resultRelInfo, slot, estate,
&conflictTid, &slot->tts_tid,
list_make1_oid(conflictindex)))
{
if (*conflictslot)
ExecDropSingleTupleTableSlot(*conflictslot);
*conflictslot = NULL;
return false;
}
*conflictslot = table_slot_create(rel, NULL);
PushActiveSnapshot(GetLatestSnapshot());
res = table_tuple_lock(rel, &conflictTid, GetActiveSnapshot(),
*conflictslot,
GetCurrentCommandId(false),
LockTupleShare,
LockWaitBlock,
0 /* don't follow updates */ ,
&tmfd);
PopActiveSnapshot();
if (should_refetch_tuple(res, &tmfd))
goto retry;
return true;
}
/*
* Check all the unique indexes in 'recheckIndexes' for conflict with the
* tuple in 'remoteslot' and report if found.
*/
static void
CheckAndReportConflict(ResultRelInfo *resultRelInfo, EState *estate,
ConflictType type, List *recheckIndexes,
TupleTableSlot *searchslot, TupleTableSlot *remoteslot)
{
List *conflicttuples = NIL;
TupleTableSlot *conflictslot;
/* Check all the unique indexes for conflicts */
foreach_oid(uniqueidx, resultRelInfo->ri_onConflictArbiterIndexes)
{
if (list_member_oid(recheckIndexes, uniqueidx) &&
FindConflictTuple(resultRelInfo, estate, uniqueidx, remoteslot,
&conflictslot))
{
ConflictTupleInfo *conflicttuple = palloc0_object(ConflictTupleInfo);
conflicttuple->slot = conflictslot;
conflicttuple->indexoid = uniqueidx;
GetTupleTransactionInfo(conflictslot, &conflicttuple->xmin,
&conflicttuple->origin, &conflicttuple->ts);
conflicttuples = lappend(conflicttuples, conflicttuple);
}
}
/* Report the conflict, if found */
if (conflicttuples)
ReportApplyConflict(estate, resultRelInfo, ERROR,
list_length(conflicttuples) > 1 ? CT_MULTIPLE_UNIQUE_CONFLICTS : type,
searchslot, remoteslot, conflicttuples);
}
/*
* Insert tuple represented in the slot to the relation, update the indexes,
* and execute any constraints and per-row triggers.
*
* Caller is responsible for opening the indexes.
*/
void
ExecSimpleRelationInsert(ResultRelInfo *resultRelInfo,
EState *estate, TupleTableSlot *slot)
{
bool skip_tuple = false;
Relation rel = resultRelInfo->ri_RelationDesc;
/* For now we support only tables. */
Assert(rel->rd_rel->relkind == RELKIND_RELATION);
CheckCmdReplicaIdentity(rel, CMD_INSERT);
/* BEFORE ROW INSERT Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_before_row)
{
if (!ExecBRInsertTriggers(estate, resultRelInfo, slot))
skip_tuple = true; /* "do nothing" */
}
if (!skip_tuple)
{
List *recheckIndexes = NIL;
List *conflictindexes;
bool conflict = false;
/* Compute stored generated columns */
if (rel->rd_att->constr &&
rel->rd_att->constr->has_generated_stored)
ExecComputeStoredGenerated(resultRelInfo, estate, slot,
CMD_INSERT);
/* Check the constraints of the tuple */
if (rel->rd_att->constr)
ExecConstraints(resultRelInfo, slot, estate);
if (rel->rd_rel->relispartition)
ExecPartitionCheck(resultRelInfo, slot, estate, true);
/* OK, store the tuple and create index entries for it */
simple_table_tuple_insert(resultRelInfo->ri_RelationDesc, slot);
conflictindexes = resultRelInfo->ri_onConflictArbiterIndexes;
if (resultRelInfo->ri_NumIndices > 0)
recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
slot, estate, false,
conflictindexes ? true : false,
&conflict,
conflictindexes, false);
/*
* Checks the conflict indexes to fetch the conflicting local tuple
* and reports the conflict. We perform this check here, instead of
* performing an additional index scan before the actual insertion and
* reporting the conflict if any conflicting tuples are found. This is
* to avoid the overhead of executing the extra scan for each INSERT
* operation, even when no conflict arises, which could introduce
* significant overhead to replication, particularly in cases where
* conflicts are rare.
*
* XXX OTOH, this could lead to clean-up effort for dead tuples added
* in heap and index in case of conflicts. But as conflicts shouldn't
* be a frequent thing so we preferred to save the performance
* overhead of extra scan before each insertion.
*/
if (conflict)
CheckAndReportConflict(resultRelInfo, estate, CT_INSERT_EXISTS,
recheckIndexes, NULL, slot);
/* AFTER ROW INSERT Triggers */
ExecARInsertTriggers(estate, resultRelInfo, slot,
recheckIndexes, NULL);
/*
* XXX we should in theory pass a TransitionCaptureState object to the
* above to capture transition tuples, but after statement triggers
* don't actually get fired by replication yet anyway
*/
list_free(recheckIndexes);
}
}
/*
* Find the searchslot tuple and update it with data in the slot,
* update the indexes, and execute any constraints and per-row triggers.
*
* Caller is responsible for opening the indexes.
*/
void
ExecSimpleRelationUpdate(ResultRelInfo *resultRelInfo,
EState *estate, EPQState *epqstate,
TupleTableSlot *searchslot, TupleTableSlot *slot)
{
bool skip_tuple = false;
Relation rel = resultRelInfo->ri_RelationDesc;
ItemPointer tid = &(searchslot->tts_tid);
/*
* We support only non-system tables, with
* check_publication_add_relation() accountable.
*/
Assert(rel->rd_rel->relkind == RELKIND_RELATION);
Assert(!IsCatalogRelation(rel));
CheckCmdReplicaIdentity(rel, CMD_UPDATE);
/* BEFORE ROW UPDATE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_update_before_row)
{
if (!ExecBRUpdateTriggers(estate, epqstate, resultRelInfo,
tid, NULL, slot, NULL, NULL, false))
skip_tuple = true; /* "do nothing" */
}
if (!skip_tuple)
{
List *recheckIndexes = NIL;
TU_UpdateIndexes update_indexes;
List *conflictindexes;
bool conflict = false;
/* Compute stored generated columns */
if (rel->rd_att->constr &&
rel->rd_att->constr->has_generated_stored)
ExecComputeStoredGenerated(resultRelInfo, estate, slot,
CMD_UPDATE);
/* Check the constraints of the tuple */
if (rel->rd_att->constr)
ExecConstraints(resultRelInfo, slot, estate);
if (rel->rd_rel->relispartition)
ExecPartitionCheck(resultRelInfo, slot, estate, true);
simple_table_tuple_update(rel, tid, slot, estate->es_snapshot,
&update_indexes);
conflictindexes = resultRelInfo->ri_onConflictArbiterIndexes;
if (resultRelInfo->ri_NumIndices > 0 && (update_indexes != TU_None))
recheckIndexes = ExecInsertIndexTuples(resultRelInfo,
slot, estate, true,
conflictindexes ? true : false,
&conflict, conflictindexes,
(update_indexes == TU_Summarizing));
/*
* Refer to the comments above the call to CheckAndReportConflict() in
* ExecSimpleRelationInsert to understand why this check is done at
* this point.
*/
if (conflict)
CheckAndReportConflict(resultRelInfo, estate, CT_UPDATE_EXISTS,
recheckIndexes, searchslot, slot);
/* AFTER ROW UPDATE Triggers */
ExecARUpdateTriggers(estate, resultRelInfo,
NULL, NULL,
tid, NULL, slot,
recheckIndexes, NULL, false);
list_free(recheckIndexes);
}
}
/*
* Find the searchslot tuple and delete it, and execute any constraints
* and per-row triggers.
*
* Caller is responsible for opening the indexes.
*/
void
ExecSimpleRelationDelete(ResultRelInfo *resultRelInfo,
EState *estate, EPQState *epqstate,
TupleTableSlot *searchslot)
{
bool skip_tuple = false;
Relation rel = resultRelInfo->ri_RelationDesc;
ItemPointer tid = &searchslot->tts_tid;
CheckCmdReplicaIdentity(rel, CMD_DELETE);
/* BEFORE ROW DELETE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_delete_before_row)
{
skip_tuple = !ExecBRDeleteTriggers(estate, epqstate, resultRelInfo,
tid, NULL, NULL, NULL, NULL, false);
}
if (!skip_tuple)
{
/* OK, delete the tuple */
simple_table_tuple_delete(rel, tid, estate->es_snapshot);
/* AFTER ROW DELETE Triggers */
ExecARDeleteTriggers(estate, resultRelInfo,
tid, NULL, NULL, false);
}
}
/*
* Check if command can be executed with current replica identity.
*/
void
CheckCmdReplicaIdentity(Relation rel, CmdType cmd)
{
PublicationDesc pubdesc;
/*
* Skip checking the replica identity for partitioned tables, because the
* operations are actually performed on the leaf partitions.
*/
if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
return;
/* We only need to do checks for UPDATE and DELETE. */
if (cmd != CMD_UPDATE && cmd != CMD_DELETE)
return;
/*
* It is only safe to execute UPDATE/DELETE if the relation does not
* publish UPDATEs or DELETEs, or all the following conditions are
* satisfied:
*
* 1. All columns, referenced in the row filters from publications which
* the relation is in, are valid - i.e. when all referenced columns are
* part of REPLICA IDENTITY.
*
* 2. All columns, referenced in the column lists are valid - i.e. when
* all columns referenced in the REPLICA IDENTITY are covered by the
* column list.
*
* 3. All generated columns in REPLICA IDENTITY of the relation, are valid
* - i.e. when all these generated columns are published.
*
* XXX We could optimize it by first checking whether any of the
* publications have a row filter or column list for this relation, or if
* the relation contains a generated column. If none of these exist and
* the relation has replica identity then we can avoid building the
* descriptor but as this happens only one time it doesn't seem worth the
* additional complexity.
*/
RelationBuildPublicationDesc(rel, &pubdesc);
if (cmd == CMD_UPDATE && !pubdesc.rf_valid_for_update)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("cannot update table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Column used in the publication WHERE expression is not part of the replica identity.")));
else if (cmd == CMD_UPDATE && !pubdesc.cols_valid_for_update)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("cannot update table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Column list used by the publication does not cover the replica identity.")));
else if (cmd == CMD_UPDATE && !pubdesc.gencols_valid_for_update)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("cannot update table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Replica identity must not contain unpublished generated columns.")));
else if (cmd == CMD_DELETE && !pubdesc.rf_valid_for_delete)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("cannot delete from table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Column used in the publication WHERE expression is not part of the replica identity.")));
else if (cmd == CMD_DELETE && !pubdesc.cols_valid_for_delete)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("cannot delete from table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Column list used by the publication does not cover the replica identity.")));
else if (cmd == CMD_DELETE && !pubdesc.gencols_valid_for_delete)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("cannot delete from table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Replica identity must not contain unpublished generated columns.")));
/* If relation has replica identity we are always good. */
if (OidIsValid(RelationGetReplicaIndex(rel)))
return;
/* REPLICA IDENTITY FULL is also good for UPDATE/DELETE. */
if (rel->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
return;
/*
* This is UPDATE/DELETE and there is no replica identity.
*
* Check if the table publishes UPDATES or DELETES.
*/
if (cmd == CMD_UPDATE && pubdesc.pubactions.pubupdate)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot update table \"%s\" because it does not have a replica identity and publishes updates",
RelationGetRelationName(rel)),
errhint("To enable updating the table, set REPLICA IDENTITY using ALTER TABLE.")));
else if (cmd == CMD_DELETE && pubdesc.pubactions.pubdelete)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot delete from table \"%s\" because it does not have a replica identity and publishes deletes",
RelationGetRelationName(rel)),
errhint("To enable deleting from the table, set REPLICA IDENTITY using ALTER TABLE.")));
}
/*
* Check if we support writing into specific relkind.
*
* The nspname and relname are only needed for error reporting.
*/
void
CheckSubscriptionRelkind(char relkind, const char *nspname,
const char *relname)
{
if (relkind != RELKIND_RELATION && relkind != RELKIND_PARTITIONED_TABLE)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot use relation \"%s.%s\" as logical replication target",
nspname, relname),
errdetail_relkind_not_supported(relkind)));
}