You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
postgres/src/backend/rewrite/rowsecurity.c

582 lines
19 KiB

/*
* rewrite/rowsecurity.c
* Routines to support policies for row level security (aka RLS).
*
* Policies in PostgreSQL provide a mechanism to limit what records are
* returned to a user and what records a user is permitted to add to a table.
*
* Policies can be defined for specific roles, specific commands, or provided
* by an extension. Row security can also be enabled for a table without any
* policies being explicitly defined, in which case a default-deny policy is
* applied.
*
* Any part of the system which is returning records back to the user, or
* which is accepting records from the user to add to a table, needs to
* consider the policies associated with the table (if any). For normal
* queries, this is handled by calling prepend_row_security_policies() during
* rewrite, which looks at each RTE and adds the expressions defined by the
* policies to the securityQuals list for the RTE. For queries which modify
* the relation, any WITH CHECK policies are added to the list of
* WithCheckOptions for the Query and checked against each row which is being
* added to the table. Other parts of the system (eg: COPY) simply construct
* a normal query and use that, if RLS is to be applied.
*
* The check to see if RLS should be enabled is provided through
* check_enable_rls(), which returns an enum (defined in rowsecurity.h) to
* indicate if RLS should be enabled (RLS_ENABLED), or bypassed (RLS_NONE or
* RLS_NONE_ENV). RLS_NONE_ENV indicates that RLS should be bypassed
* in the current environment, but that may change if the row_security GUC or
* the current role changes.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/htup_details.h"
#include "access/sysattr.h"
#include "catalog/pg_class.h"
#include "catalog/pg_inherits_fn.h"
#include "catalog/pg_policy.h"
#include "catalog/pg_type.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/pg_list.h"
#include "nodes/plannodes.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteHandler.h"
#include "rewrite/rewriteManip.h"
#include "rewrite/rowsecurity.h"
#include "utils/acl.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/rls.h"
#include "utils/syscache.h"
#include "tcop/utility.h"
static List *pull_row_security_policies(CmdType cmd, Relation relation,
Oid user_id);
static void process_policies(Query* root, List *policies, int rt_index,
Expr **final_qual,
Expr **final_with_check_qual,
bool *hassublinks,
BoolExprType boolop);
static bool check_role_for_policy(ArrayType *policy_roles, Oid user_id);
/*
* hooks to allow extensions to add their own security policies
*
* row_security_policy_hook_permissive can be used to add policies which
* are included in the "OR"d set of policies.
*
* row_security_policy_hook_restrictive can be used to add policies which
* are enforced, regardless of other policies (they are "AND"d).
*
* See below where the hook is called in prepend_row_security_policies for
* insight into how to use this hook.
*/
row_security_policy_hook_type row_security_policy_hook_permissive = NULL;
row_security_policy_hook_type row_security_policy_hook_restrictive = NULL;
/*
* Get any row security quals and check quals that should be applied to the
* specified RTE.
*
* In addition, hasRowSecurity is set to true if row level security is enabled
* (even if this RTE doesn't have any row security quals), and hasSubLinks is
* set to true if any of the quals returned contain sublinks.
*/
void
get_row_security_policies(Query* root, RangeTblEntry* rte, int rt_index,
List **securityQuals, List **withCheckOptions,
bool *hasRowSecurity, bool *hasSubLinks)
{
Expr *rowsec_expr = NULL;
Expr *rowsec_with_check_expr = NULL;
Expr *hook_expr_restrictive = NULL;
Expr *hook_with_check_expr_restrictive = NULL;
Expr *hook_expr_permissive = NULL;
Expr *hook_with_check_expr_permissive = NULL;
List *rowsec_policies;
List *hook_policies_restrictive = NIL;
List *hook_policies_permissive = NIL;
Relation rel;
Oid user_id;
int sec_context;
int rls_status;
bool defaultDeny = false;
/* Defaults for the return values */
*securityQuals = NIL;
*withCheckOptions = NIL;
*hasRowSecurity = false;
*hasSubLinks = false;
/* This is just to get the security context */
GetUserIdAndSecContext(&user_id, &sec_context);
/* Switch to checkAsUser if it's set */
user_id = rte->checkAsUser ? rte->checkAsUser : GetUserId();
/*
* If this is not a normal relation, or we have been told
* to explicitly skip RLS (perhaps because this is an FK check)
* then just return immediately.
*/
if (rte->relid < FirstNormalObjectId
|| rte->relkind != RELKIND_RELATION
|| (sec_context & SECURITY_ROW_LEVEL_DISABLED))
return;
/* Determine the state of RLS for this, pass checkAsUser explicitly */
rls_status = check_enable_rls(rte->relid, rte->checkAsUser, false);
/* If there is no RLS on this table at all, nothing to do */
if (rls_status == RLS_NONE)
return;
/*
* RLS_NONE_ENV means we are not doing any RLS now, but that may change
* with changes to the environment, so we mark it as hasRowSecurity to
* force a re-plan when the environment changes.
*/
if (rls_status == RLS_NONE_ENV)
{
/*
* Indicate that this query may involve RLS and must therefore
* be replanned if the environment changes (GUCs, role), but we
* are not adding anything here.
*/
*hasRowSecurity = true;
return;
}
/* Grab the built-in policies which should be applied to this relation. */
rel = heap_open(rte->relid, NoLock);
rowsec_policies = pull_row_security_policies(root->commandType, rel,
user_id);
/*
* Check if this is only the default-deny policy.
*
* Normally, if the table has row security enabled but there are
* no policies, we use a default-deny policy and not allow anything.
* However, when an extension uses the hook to add their own
* policies, we don't want to include the default deny policy or
* there won't be any way for a user to use an extension exclusively
* for the policies to be used.
*/
if (((RowSecurityPolicy *) linitial(rowsec_policies))->policy_id
== InvalidOid)
defaultDeny = true;
/* Now that we have our policies, build the expressions from them. */
process_policies(root, rowsec_policies, rt_index, &rowsec_expr,
&rowsec_with_check_expr, hasSubLinks, OR_EXPR);
/*
* Also, allow extensions to add their own policies.
*
* extensions can add either permissive or restrictive policies.
*
* Note that, as with the internal policies, if multiple policies are
* returned then they will be combined into a single expression with
* all of them OR'd (for permissive) or AND'd (for restrictive) together.
*
* If only a USING policy is returned by the extension then it will be
* used for WITH CHECK as well, similar to how internal policies are
* handled.
*
* The only caveat to this is that if there are NO internal policies
* defined, there ARE policies returned by the extension, and RLS is
* enabled on the table, then we will ignore the internally-generated
* default-deny policy and use only the policies returned by the
* extension.
*/
if (row_security_policy_hook_restrictive)
{
hook_policies_restrictive = (*row_security_policy_hook_restrictive)(root->commandType, rel);
/* Build the expression from any policies returned. */
if (hook_policies_restrictive != NIL)
process_policies(root, hook_policies_restrictive, rt_index,
&hook_expr_restrictive,
&hook_with_check_expr_restrictive,
hasSubLinks,
AND_EXPR);
}
if (row_security_policy_hook_permissive)
{
hook_policies_permissive = (*row_security_policy_hook_permissive)(root->commandType, rel);
/* Build the expression from any policies returned. */
if (hook_policies_permissive != NIL)
process_policies(root, hook_policies_permissive, rt_index,
&hook_expr_permissive,
&hook_with_check_expr_permissive, hasSubLinks,
OR_EXPR);
}
/*
* If the only built-in policy is the default-deny one, and hook
* policies exist, then use the hook policies only and do not apply
* the default-deny policy. Otherwise, we will apply both sets below.
*/
if (defaultDeny &&
(hook_policies_restrictive != NIL || hook_policies_permissive != NIL))
{
rowsec_expr = NULL;
rowsec_with_check_expr = NULL;
}
/*
* For INSERT or UPDATE, we need to add the WITH CHECK quals to
* Query's withCheckOptions to verify that any new records pass the
* WITH CHECK policy (this will be a copy of the USING policy, if no
* explicit WITH CHECK policy exists).
*/
if (root->commandType == CMD_INSERT || root->commandType == CMD_UPDATE)
{
/*
* WITH CHECK OPTIONS wants a WCO node which wraps each Expr, so
* create them as necessary.
*/
/*
* Handle any restrictive policies first.
*
* They can simply be added.
*/
if (hook_with_check_expr_restrictive)
{
WithCheckOption *wco;
wco = (WithCheckOption *) makeNode(WithCheckOption);
wco->kind = root->commandType == CMD_INSERT ? WCO_RLS_INSERT_CHECK :
WCO_RLS_UPDATE_CHECK;
wco->relname = pstrdup(RelationGetRelationName(rel));
wco->qual = (Node *) hook_with_check_expr_restrictive;
wco->cascaded = false;
*withCheckOptions = lappend(*withCheckOptions, wco);
}
/*
* Handle built-in policies, if there are no permissive
* policies from the hook.
*/
if (rowsec_with_check_expr && !hook_with_check_expr_permissive)
{
WithCheckOption *wco;
wco = (WithCheckOption *) makeNode(WithCheckOption);
wco->kind = root->commandType == CMD_INSERT ? WCO_RLS_INSERT_CHECK :
WCO_RLS_UPDATE_CHECK;
wco->relname = pstrdup(RelationGetRelationName(rel));
wco->qual = (Node *) rowsec_with_check_expr;
wco->cascaded = false;
*withCheckOptions = lappend(*withCheckOptions, wco);
}
/* Handle the hook policies, if there are no built-in ones. */
else if (!rowsec_with_check_expr && hook_with_check_expr_permissive)
{
WithCheckOption *wco;
wco = (WithCheckOption *) makeNode(WithCheckOption);
wco->kind = root->commandType == CMD_INSERT ? WCO_RLS_INSERT_CHECK :
WCO_RLS_UPDATE_CHECK;
wco->relname = pstrdup(RelationGetRelationName(rel));
wco->qual = (Node *) hook_with_check_expr_permissive;
wco->cascaded = false;
*withCheckOptions = lappend(*withCheckOptions, wco);
}
/* Handle the case where there are both. */
else if (rowsec_with_check_expr && hook_with_check_expr_permissive)
{
WithCheckOption *wco;
List *combined_quals = NIL;
Expr *combined_qual_eval;
combined_quals = lcons(copyObject(rowsec_with_check_expr),
combined_quals);
combined_quals = lcons(copyObject(hook_with_check_expr_permissive),
combined_quals);
combined_qual_eval = makeBoolExpr(OR_EXPR, combined_quals, -1);
wco = (WithCheckOption *) makeNode(WithCheckOption);
wco->kind = root->commandType == CMD_INSERT ? WCO_RLS_INSERT_CHECK :
WCO_RLS_UPDATE_CHECK;
wco->relname = pstrdup(RelationGetRelationName(rel));
wco->qual = (Node *) combined_qual_eval;
wco->cascaded = false;
*withCheckOptions = lappend(*withCheckOptions, wco);
}
}
/* For SELECT, UPDATE, and DELETE, set the security quals */
if (root->commandType == CMD_SELECT
|| root->commandType == CMD_UPDATE
|| root->commandType == CMD_DELETE)
{
/* restrictive policies can simply be added to the list first */
if (hook_expr_restrictive)
*securityQuals = lappend(*securityQuals, hook_expr_restrictive);
/* If we only have internal permissive, then just add those */
if (rowsec_expr && !hook_expr_permissive)
*securityQuals = lappend(*securityQuals, rowsec_expr);
/* .. and if we have only permissive policies from the hook */
else if (!rowsec_expr && hook_expr_permissive)
*securityQuals = lappend(*securityQuals, hook_expr_permissive);
/* if we have both, we have to combine them with an OR */
else if (rowsec_expr && hook_expr_permissive)
{
List *combined_quals = NIL;
Expr *combined_qual_eval;
combined_quals = lcons(copyObject(rowsec_expr), combined_quals);
combined_quals = lcons(copyObject(hook_expr_permissive),
combined_quals);
combined_qual_eval = makeBoolExpr(OR_EXPR, combined_quals, -1);
*securityQuals = lappend(*securityQuals, combined_qual_eval);
}
}
heap_close(rel, NoLock);
/*
* Mark this query as having row security, so plancache can invalidate
* it when necessary (eg: role changes)
*/
*hasRowSecurity = true;
return;
}
/*
* pull_row_security_policies
*
* Returns the list of policies to be added for this relation, based on the
* type of command and the roles to which it applies, from the relation cache.
*
*/
static List *
pull_row_security_policies(CmdType cmd, Relation relation, Oid user_id)
{
List *policies = NIL;
ListCell *item;
/*
* Row security is enabled for the relation and the row security GUC is
* either 'on' or 'force' here, so find the policies to apply to the table.
* There must always be at least one policy defined (may be the simple
* 'default-deny' policy, if none are explicitly defined on the table).
*/
foreach(item, relation->rd_rsdesc->policies)
{
RowSecurityPolicy *policy = (RowSecurityPolicy *) lfirst(item);
/* Always add ALL policies, if they exist. */
if (policy->polcmd == '*' &&
check_role_for_policy(policy->roles, user_id))
policies = lcons(policy, policies);
/* Add relevant command-specific policies to the list. */
switch(cmd)
{
case CMD_SELECT:
if (policy->polcmd == ACL_SELECT_CHR
&& check_role_for_policy(policy->roles, user_id))
policies = lcons(policy, policies);
break;
case CMD_INSERT:
/* If INSERT then only need to add the WITH CHECK qual */
if (policy->polcmd == ACL_INSERT_CHR
&& check_role_for_policy(policy->roles, user_id))
policies = lcons(policy, policies);
break;
case CMD_UPDATE:
if (policy->polcmd == ACL_UPDATE_CHR
&& check_role_for_policy(policy->roles, user_id))
policies = lcons(policy, policies);
break;
case CMD_DELETE:
if (policy->polcmd == ACL_DELETE_CHR
&& check_role_for_policy(policy->roles, user_id))
policies = lcons(policy, policies);
break;
default:
elog(ERROR, "unrecognized policy command type %d", (int) cmd);
break;
}
}
/*
* There should always be a policy applied. If there are none found then
* create a simply defauly-deny policy (might be that policies exist but
* that none of them apply to the role which is querying the table).
*/
if (policies == NIL)
{
RowSecurityPolicy *policy = NULL;
Datum role;
role = ObjectIdGetDatum(ACL_ID_PUBLIC);
policy = palloc0(sizeof(RowSecurityPolicy));
policy->policy_name = pstrdup("default-deny policy");
policy->policy_id = InvalidOid;
policy->polcmd = '*';
policy->roles = construct_array(&role, 1, OIDOID, sizeof(Oid), true,
'i');
policy->qual = (Expr *) makeConst(BOOLOID, -1, InvalidOid,
sizeof(bool), BoolGetDatum(false),
false, true);
policy->with_check_qual = copyObject(policy->qual);
policy->hassublinks = false;
policies = list_make1(policy);
}
Assert(policies != NIL);
return policies;
}
/*
* process_policies
*
* This will step through the policies which are passed in (which would come
* from either the built-in ones created on a table, or from policies provided
* by an extension through the hook provided), work out how to combine them,
* rewrite them as necessary, and produce an Expr for the normal security
* quals and an Expr for the with check quals.
*
* qual_eval, with_check_eval, and hassublinks are output variables
*/
static void
process_policies(Query* root, List *policies, int rt_index, Expr **qual_eval,
Expr **with_check_eval, bool *hassublinks,
BoolExprType boolop)
{
ListCell *item;
List *quals = NIL;
List *with_check_quals = NIL;
/*
* Extract the USING and WITH CHECK quals from each of the policies
* and add them to our lists. We only want WITH CHECK quals if this
* RTE is the query's result relation.
*/
foreach(item, policies)
{
RowSecurityPolicy *policy = (RowSecurityPolicy *) lfirst(item);
if (policy->qual != NULL)
quals = lcons(copyObject(policy->qual), quals);
if (policy->with_check_qual != NULL &&
rt_index == root->resultRelation)
with_check_quals = lcons(copyObject(policy->with_check_qual),
with_check_quals);
/*
* For each policy, if there is only a USING clause then copy/use it for
* the WITH CHECK policy also, if this RTE is the query's result
* relation.
*/
if (policy->qual != NULL && policy->with_check_qual == NULL &&
rt_index == root->resultRelation)
with_check_quals = lcons(copyObject(policy->qual),
with_check_quals);
if (policy->hassublinks)
*hassublinks = true;
}
/*
* If we end up without any normal quals (perhaps the only policy matched
* was for INSERT), then create a single all-false one.
*/
if (quals == NIL)
quals = lcons(makeConst(BOOLOID, -1, InvalidOid, sizeof(bool),
BoolGetDatum(false), false, true), quals);
/*
* Row security quals always have the target table as varno 1, as no
* joins are permitted in row security expressions. We must walk the
* expression, updating any references to varno 1 to the varno
* the table has in the outer query.
*
* We rewrite the expression in-place.
*
* We must have some quals at this point; the default-deny policy, if
* nothing else. Note that we might not have any WITH CHECK quals-
* that's fine, as this might not be the resultRelation.
*/
Assert(quals != NIL);
ChangeVarNodes((Node *) quals, 1, rt_index, 0);
if (with_check_quals != NIL)
ChangeVarNodes((Node *) with_check_quals, 1, rt_index, 0);
/*
* If more than one security qual is returned, then they need to be
* combined together.
*/
if (list_length(quals) > 1)
*qual_eval = makeBoolExpr(boolop, quals, -1);
else
*qual_eval = (Expr*) linitial(quals);
/*
* Similairly, if more than one WITH CHECK qual is returned, then
* they need to be combined together.
*
* with_check_quals is allowed to be NIL here since this might not be the
* resultRelation (see above).
*/
if (list_length(with_check_quals) > 1)
*with_check_eval = makeBoolExpr(boolop, with_check_quals, -1);
else if (with_check_quals != NIL)
*with_check_eval = (Expr*) linitial(with_check_quals);
else
*with_check_eval = NULL;
return;
}
/*
* check_role_for_policy -
* determines if the policy should be applied for the current role
*/
static bool
check_role_for_policy(ArrayType *policy_roles, Oid user_id)
{
int i;
Oid *roles = (Oid *) ARR_DATA_PTR(policy_roles);
/* Quick fall-thru for policies applied to all roles */
if (roles[0] == ACL_ID_PUBLIC)
return true;
for (i = 0; i < ARR_DIMS(policy_roles)[0]; i++)
{
if (has_privs_of_role(user_id, roles[i]))
return true;
}
return false;
}