The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grafana/pkg/tsdb/azuremonitor/azuremonitor-datasource_tes...

599 lines
26 KiB

package azuremonitor
import (
"context"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"net/url"
"path/filepath"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/stretchr/testify/require"
ptr "github.com/xorcare/pointer"
)
func TestAzureMonitorBuildQueries(t *testing.T) {
datasource := &AzureMonitorDatasource{}
dsInfo := datasourceInfo{
Settings: azureMonitorSettings{
SubscriptionId: "default-subscription",
},
}
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
duration, _ := time.ParseDuration("400s")
tests := []struct {
name string
azureMonitorVariedProperties map[string]interface{}
azureMonitorQueryTarget string
expectedInterval string
queryInterval time.Duration
}{
{
name: "Parse queries from frontend and build AzureMonitor API queries",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"top": "10",
},
expectedInterval: "PT1M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "time grain set to auto",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "auto",
"top": "10",
},
queryInterval: duration,
expectedInterval: "PT15M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT15M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "time grain set to auto",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "auto",
"allowedTimeGrainsMs": []int64{60000, 300000},
"top": "10",
},
queryInterval: duration,
expectedInterval: "PT5M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT5M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "has a dimension filter",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimension": "blob",
"dimensionFilter": "*",
"top": "30",
},
queryInterval: duration,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
{
name: "has a dimension filter and none Dimension",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimension": "None",
"dimensionFilter": "*",
"top": "10",
},
queryInterval: duration,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "has dimensionFilter*s* property with one dimension",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimensionFilters": []azureMonitorDimensionFilter{{"blob", "eq", "*"}},
"top": "30",
},
queryInterval: duration,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
{
name: "has dimensionFilter*s* property with two dimensions",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimensionFilters": []azureMonitorDimensionFilter{{"blob", "eq", "*"}, {"tier", "eq", "*"}},
"top": "30",
},
queryInterval: duration,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27+and+tier+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
}
commonAzureModelProps := map[string]interface{}{
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
for k, v := range commonAzureModelProps {
tt.azureMonitorVariedProperties[k] = v
}
azureMonitorJSON, _ := json.Marshal(tt.azureMonitorVariedProperties)
tsdbQuery := []backend.DataQuery{
{
JSON: []byte(fmt.Sprintf(`{
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
"azureMonitor": %s
}`, string(azureMonitorJSON))),
RefID: "A",
Interval: tt.queryInterval,
TimeRange: backend.TimeRange{
From: fromStart,
To: fromStart.Add(34 * time.Minute),
},
},
}
azureMonitorQuery := &AzureMonitorQuery{
URL: "12345678-aaaa-bbbb-cccc-123456789abc/resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics",
UrlComponents: map[string]string{
"metricDefinition": "Microsoft.Compute/virtualMachines",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
},
Target: tt.azureMonitorQueryTarget,
RefID: "A",
Alias: "testalias",
TimeRange: backend.TimeRange{
From: fromStart,
To: fromStart.Add(34 * time.Minute),
},
}
queries, err := datasource.buildQueries(tsdbQuery, dsInfo)
require.NoError(t, err)
if diff := cmp.Diff(azureMonitorQuery, queries[0], cmpopts.IgnoreUnexported(simplejson.Json{}), cmpopts.IgnoreFields(AzureMonitorQuery{}, "Params")); diff != "" {
t.Errorf("Result mismatch (-want +got):\n%s", diff)
}
expected := `http://ds/#blade/Microsoft_Azure_MonitoringMetrics/Metrics.ReactView/Referer/MetricsExplorer/` +
`TimeContext/%7B%22absolute%22%3A%7B%22startTime%22%3A%222018-03-15T13%3A00%3A00Z%22%2C%22endTime%22%3A%222018-03-15T13%3A34%3A00Z%22%7D%7D/` +
`ChartDefinition/%7B%22v2charts%22%3A%5B%7B%22metrics%22%3A%5B%7B%22resourceMetadata%22%3A%7B%22id%22%3A%22%2Fsubscriptions%2F12345678-aaaa-bbbb-cccc-123456789abc%2FresourceGroups%2Fgrafanastaging%2Fproviders%2FMicrosoft.Compute%2FvirtualMachines%2Fgrafana%22%7D%2C` +
`%22name%22%3A%22Percentage+CPU%22%2C%22aggregationType%22%3A4%2C%22namespace%22%3A%22Microsoft.Compute-virtualMachines%22%2C%22metricVisualization%22%3A%7B%22displayName%22%3A%22Percentage+CPU%22%2C%22resourceDisplayName%22%3A%22grafana%22%7D%7D%5D%7D%5D%7D`
actual, err := getQueryUrl(queries[0], "http://ds")
require.NoError(t, err)
require.Equal(t, expected, actual)
})
}
}
func makeDates(startDate time.Time, count int, interval time.Duration) (times []time.Time) {
for i := 0; i < count; i++ {
times = append(times, startDate.Add(interval*time.Duration(i)))
}
return
}
func makeTestDataLink(url string) data.DataLink {
return data.DataLink{
Title: "View in Azure Portal",
TargetBlank: true,
URL: url,
}
}
func TestAzureMonitorParseResponse(t *testing.T) {
// datalinks for the test frames
averageLink := makeTestDataLink(`http://ds/#blade/Microsoft_Azure_MonitoringMetrics/Metrics.ReactView/Referer/MetricsExplorer/TimeContext/%7B%22absolute%22%3A%7B%22startTime%22%3A%220001-01-01T00%3A00%3A00Z%22%2C%22endTime%22%3A%220001-01-01T00%3A00%3A00Z%22%7D%7D/` +
`ChartDefinition/%7B%22v2charts%22%3A%5B%7B%22metrics%22%3A%5B%7B%22resourceMetadata%22%3A%7B%22id%22%3A%22%2Fsubscriptions%2F%2FresourceGroups%2F%2Fproviders%2F%2Fgrafana%22%7D%2C%22name%22%3A%22%22%2C%22aggregationType%22%3A4%2C%22namespace%22%3A%22%22%2C` +
`%22metricVisualization%22%3A%7B%22displayName%22%3A%22%22%2C%22resourceDisplayName%22%3A%22grafana%22%7D%7D%5D%7D%5D%7D`)
totalLink := makeTestDataLink(`http://ds/#blade/Microsoft_Azure_MonitoringMetrics/Metrics.ReactView/Referer/MetricsExplorer/TimeContext/%7B%22absolute%22%3A%7B%22startTime%22%3A%220001-01-01T00%3A00%3A00Z%22%2C%22endTime%22%3A%220001-01-01T00%3A00%3A00Z%22%7D%7D/` +
`ChartDefinition/%7B%22v2charts%22%3A%5B%7B%22metrics%22%3A%5B%7B%22resourceMetadata%22%3A%7B%22id%22%3A%22%2Fsubscriptions%2F%2FresourceGroups%2F%2Fproviders%2F%2Fgrafana%22%7D%2C%22name%22%3A%22%22%2C%22aggregationType%22%3A1%2C%22namespace%22%3A%22%22%2C` +
`%22metricVisualization%22%3A%7B%22displayName%22%3A%22%22%2C%22resourceDisplayName%22%3A%22grafana%22%7D%7D%5D%7D%5D%7D`)
maxLink := makeTestDataLink(`http://ds/#blade/Microsoft_Azure_MonitoringMetrics/Metrics.ReactView/Referer/MetricsExplorer/TimeContext/%7B%22absolute%22%3A%7B%22startTime%22%3A%220001-01-01T00%3A00%3A00Z%22%2C%22endTime%22%3A%220001-01-01T00%3A00%3A00Z%22%7D%7D/` +
`ChartDefinition/%7B%22v2charts%22%3A%5B%7B%22metrics%22%3A%5B%7B%22resourceMetadata%22%3A%7B%22id%22%3A%22%2Fsubscriptions%2F%2FresourceGroups%2F%2Fproviders%2F%2Fgrafana%22%7D%2C%22name%22%3A%22%22%2C%22aggregationType%22%3A3%2C%22namespace%22%3A%22%22%2C` +
`%22metricVisualization%22%3A%7B%22displayName%22%3A%22%22%2C%22resourceDisplayName%22%3A%22grafana%22%7D%7D%5D%7D%5D%7D`)
minLink := makeTestDataLink(`http://ds/#blade/Microsoft_Azure_MonitoringMetrics/Metrics.ReactView/Referer/MetricsExplorer/TimeContext/%7B%22absolute%22%3A%7B%22startTime%22%3A%220001-01-01T00%3A00%3A00Z%22%2C%22endTime%22%3A%220001-01-01T00%3A00%3A00Z%22%7D%7D/` +
`ChartDefinition/%7B%22v2charts%22%3A%5B%7B%22metrics%22%3A%5B%7B%22resourceMetadata%22%3A%7B%22id%22%3A%22%2Fsubscriptions%2F%2FresourceGroups%2F%2Fproviders%2F%2Fgrafana%22%7D%2C%22name%22%3A%22%22%2C%22aggregationType%22%3A2%2C%22namespace%22%3A%22%22%2C` +
`%22metricVisualization%22%3A%7B%22displayName%22%3A%22%22%2C%22resourceDisplayName%22%3A%22grafana%22%7D%7D%5D%7D%5D%7D`)
countLink := makeTestDataLink(`http://ds/#blade/Microsoft_Azure_MonitoringMetrics/Metrics.ReactView/Referer/MetricsExplorer/TimeContext/%7B%22absolute%22%3A%7B%22startTime%22%3A%220001-01-01T00%3A00%3A00Z%22%2C%22endTime%22%3A%220001-01-01T00%3A00%3A00Z%22%7D%7D/` +
`ChartDefinition/%7B%22v2charts%22%3A%5B%7B%22metrics%22%3A%5B%7B%22resourceMetadata%22%3A%7B%22id%22%3A%22%2Fsubscriptions%2F%2FresourceGroups%2F%2Fproviders%2F%2Fgrafana%22%7D%2C%22name%22%3A%22%22%2C%22aggregationType%22%3A7%2C%22namespace%22%3A%22%22%2C` +
`%22metricVisualization%22%3A%7B%22displayName%22%3A%22%22%2C%22resourceDisplayName%22%3A%22grafana%22%7D%7D%5D%7D%5D%7D`)
tests := []struct {
name string
responseFile string
mockQuery *AzureMonitorQuery
expectedFrames data.Frames
queryIntervalMS int64
}{
{
name: "average aggregate time series response",
responseFile: "1-azure-monitor-response-avg.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 8, 10, 13, 0, 0, time.UTC), 5, time.Minute),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(2.0875), ptr.Float64(2.1525), ptr.Float64(2.155), ptr.Float64(3.6925), ptr.Float64(2.44),
}).SetConfig(&data.FieldConfig{Unit: "percent", Links: []data.DataLink{averageLink}})),
},
},
{
name: "total aggregate time series response",
responseFile: "2-azure-monitor-response-total.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{totalLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(8.26), ptr.Float64(8.7), ptr.Float64(14.82), ptr.Float64(10.07), ptr.Float64(8.52),
}).SetConfig(&data.FieldConfig{Unit: "percent", Links: []data.DataLink{totalLink}})),
},
},
{
name: "maximum aggregate time series response",
responseFile: "3-azure-monitor-response-maximum.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Maximum"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 14, 26, 0, 0, time.UTC), 5, time.Minute),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{maxLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(3.07), ptr.Float64(2.92), ptr.Float64(2.87), ptr.Float64(2.27), ptr.Float64(2.52),
}).SetConfig(&data.FieldConfig{Unit: "percent", Links: []data.DataLink{maxLink}})),
},
},
{
name: "minimum aggregate time series response",
responseFile: "4-azure-monitor-response-minimum.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Minimum"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 14, 43, 0, 0, time.UTC), 5, time.Minute),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{minLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(1.51), ptr.Float64(2.38), ptr.Float64(1.69), ptr.Float64(2.27), ptr.Float64(1.96),
}).SetConfig(&data.FieldConfig{Unit: "percent", Links: []data.DataLink{minLink}})),
},
},
{
name: "count aggregate time series response",
responseFile: "5-azure-monitor-response-count.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Count"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 14, 44, 0, 0, time.UTC), 5, time.Minute),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{countLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(4), ptr.Float64(4), ptr.Float64(4), ptr.Float64(4), ptr.Float64(4),
}).SetConfig(&data.FieldConfig{Unit: "percent", Links: []data.DataLink{countLink}})),
},
},
{
name: "single dimension time series response",
responseFile: "6-azure-monitor-response-single-dimension.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Count", data.Labels{"blobtype": "PageBlob"},
[]*float64{ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), nil}).SetConfig(&data.FieldConfig{Unit: "short", Links: []data.DataLink{averageLink}})),
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Count", data.Labels{"blobtype": "BlockBlob"},
[]*float64{ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), nil}).SetConfig(&data.FieldConfig{Unit: "short", Links: []data.DataLink{averageLink}})),
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Count", data.Labels{"blobtype": "Azure Data Lake Storage"},
[]*float64{ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), nil}).SetConfig(&data.FieldConfig{Unit: "short", Links: []data.DataLink{averageLink}})),
},
},
{
name: "with alias patterns in the query",
responseFile: "2-azure-monitor-response-total.json",
mockQuery: &AzureMonitorQuery{
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{totalLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(8.26), ptr.Float64(8.7), ptr.Float64(14.82), ptr.Float64(10.07), ptr.Float64(8.52),
}).SetConfig(&data.FieldConfig{Unit: "percent", DisplayName: "custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU", Links: []data.DataLink{totalLink}})),
},
},
{
name: "single dimension with alias",
responseFile: "6-azure-monitor-response-single-dimension.json",
mockQuery: &AzureMonitorQuery{
Alias: "{{dimensionname}}={{DimensionValue}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Count", data.Labels{"blobtype": "PageBlob"},
[]*float64{ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), nil}).SetConfig(&data.FieldConfig{Unit: "short", DisplayName: "blobtype=PageBlob", Links: []data.DataLink{averageLink}})),
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Count", data.Labels{"blobtype": "BlockBlob"}, []*float64{
ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), nil,
}).SetConfig(&data.FieldConfig{Unit: "short", DisplayName: "blobtype=BlockBlob", Links: []data.DataLink{averageLink}})),
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Count", data.Labels{"blobtype": "Azure Data Lake Storage"}, []*float64{
ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), nil,
}).SetConfig(&data.FieldConfig{Unit: "short", DisplayName: "blobtype=Azure Data Lake Storage", Links: []data.DataLink{averageLink}})),
},
},
{
name: "multiple dimension time series response with label alias",
responseFile: "7-azure-monitor-response-multi-dimension.json",
mockQuery: &AzureMonitorQuery{
Alias: "{{resourcegroup}} {Blob Type={{blobtype}}, Tier={{Tier}}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2020, 06, 30, 9, 58, 0, 0, time.UTC), 3, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Capacity", data.Labels{"blobtype": "PageBlob", "tier": "Standard"},
[]*float64{ptr.Float64(675530), ptr.Float64(675530), ptr.Float64(675530)}).SetConfig(
&data.FieldConfig{Unit: "decbytes", DisplayName: "danieltest {Blob Type=PageBlob, Tier=Standard}", Links: []data.DataLink{averageLink}})),
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2020, 06, 30, 9, 58, 0, 0, time.UTC), 3, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Capacity", data.Labels{"blobtype": "BlockBlob", "tier": "Hot"},
[]*float64{ptr.Float64(0), ptr.Float64(0), ptr.Float64(0)}).SetConfig(
&data.FieldConfig{Unit: "decbytes", DisplayName: "danieltest {Blob Type=BlockBlob, Tier=Hot}", Links: []data.DataLink{averageLink}})),
data.NewFrame("",
data.NewField("Time", nil,
makeDates(time.Date(2020, 06, 30, 9, 58, 0, 0, time.UTC), 3, time.Hour),
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Blob Capacity", data.Labels{"blobtype": "Azure Data Lake Storage", "tier": "Cool"},
[]*float64{ptr.Float64(0), ptr.Float64(0), ptr.Float64(0)}).SetConfig(
&data.FieldConfig{Unit: "decbytes", DisplayName: "danieltest {Blob Type=Azure Data Lake Storage, Tier=Cool}", Links: []data.DataLink{averageLink}})),
},
},
{
name: "unspecified unit with alias should not panic",
responseFile: "8-azure-monitor-response-unspecified-unit.json",
mockQuery: &AzureMonitorQuery{
Alias: "custom",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("Time", nil,
[]time.Time{time.Date(2019, 2, 8, 10, 13, 0, 0, time.UTC)},
).SetConfig(&data.FieldConfig{Links: []data.DataLink{averageLink}}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(2.0875),
}).SetConfig(&data.FieldConfig{DisplayName: "custom", Links: []data.DataLink{averageLink}})),
},
},
}
datasource := &AzureMonitorDatasource{}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
azData := loadTestFile(t, "azuremonitor/"+tt.responseFile)
dframes, err := datasource.parseResponse(azData, tt.mockQuery, "http://ds")
require.NoError(t, err)
require.NotNil(t, dframes)
if diff := cmp.Diff(tt.expectedFrames, dframes, data.FrameTestCompareOptions()...); diff != "" {
t.Errorf("Result mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestFindClosestAllowIntervalMS(t *testing.T) {
humanIntervalToMS := map[string]int64{
"3m": 180000,
"5m": 300000,
"10m": 600000,
"15m": 900000,
"1d": 86400000,
"2d": 172800000,
}
tests := []struct {
name string
allowedTimeGrains []int64 // Note: Uses defaults when empty list
inputInterval int64
expectedInterval int64
}{
{
name: "closest to 3m is 5m",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["3m"],
expectedInterval: humanIntervalToMS["5m"],
},
{
name: "closest to 10m is 15m",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["10m"],
expectedInterval: humanIntervalToMS["15m"],
},
{
name: "closest to 2d is 1d",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["2d"],
expectedInterval: humanIntervalToMS["1d"],
},
{
name: "closest to 3m is 1d when 1d is only allowed interval",
allowedTimeGrains: []int64{humanIntervalToMS["1d"]},
inputInterval: humanIntervalToMS["2d"],
expectedInterval: humanIntervalToMS["1d"],
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
interval := findClosestAllowedIntervalMS(tt.inputInterval, tt.allowedTimeGrains)
require.Equal(t, tt.expectedInterval, interval)
})
}
}
func loadTestFile(t *testing.T, name string) AzureMonitorResponse {
t.Helper()
path := filepath.Join("testdata", name)
// Ignore gosec warning G304 since it's a test
// nolint:gosec
jsonBody, err := ioutil.ReadFile(path)
require.NoError(t, err)
var azData AzureMonitorResponse
err = json.Unmarshal(jsonBody, &azData)
require.NoError(t, err)
return azData
}
func TestAzureMonitorCreateRequest(t *testing.T) {
ctx := context.Background()
dsInfo := datasourceInfo{}
url := "http://ds/"
tests := []struct {
name string
expectedURL string
expectedHeaders http.Header
Err require.ErrorAssertionFunc
}{
{
name: "creates a request",
expectedURL: "http://ds/subscriptions",
expectedHeaders: http.Header{
"Content-Type": []string{"application/json"},
},
Err: require.NoError,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
ds := AzureMonitorDatasource{}
req, err := ds.createRequest(ctx, dsInfo, url)
tt.Err(t, err)
if req.URL.String() != tt.expectedURL {
t.Errorf("Expecting %s, got %s", tt.expectedURL, req.URL.String())
}
if !cmp.Equal(req.Header, tt.expectedHeaders) {
t.Errorf("Unexpected HTTP headers: %v", cmp.Diff(req.Header, tt.expectedHeaders))
}
})
}
}