mirror of https://github.com/postgres/postgres
Alexander Korotkov, heavily revised by me.pull/1/head
parent
262c1a42dc
commit
604ab08145
@ -0,0 +1,397 @@ |
|||||||
|
/*
|
||||||
|
* levenshtein.c |
||||||
|
* |
||||||
|
* Functions for "fuzzy" comparison of strings |
||||||
|
* |
||||||
|
* Joe Conway <mail@joeconway.com> |
||||||
|
* |
||||||
|
* contrib/fuzzystrmatch/fuzzystrmatch.c |
||||||
|
* Copyright (c) 2001-2010, PostgreSQL Global Development Group |
||||||
|
* ALL RIGHTS RESERVED; |
||||||
|
* |
||||||
|
* levenshtein() |
||||||
|
* ------------- |
||||||
|
* Written based on a description of the algorithm by Michael Gilleland |
||||||
|
* found at http://www.merriampark.com/ld.htm
|
||||||
|
* Also looked at levenshtein.c in the PHP 4.0.6 distribution for |
||||||
|
* inspiration. |
||||||
|
* Configurable penalty costs extension is introduced by Volkan |
||||||
|
* YAZICI <volkan.yazici@gmail.com>. |
||||||
|
*/ |
||||||
|
|
||||||
|
/*
|
||||||
|
* External declarations for exported functions |
||||||
|
*/ |
||||||
|
#ifdef LEVENSHTEIN_LESS_EQUAL |
||||||
|
static int levenshtein_less_equal_internal(text *s, text *t, |
||||||
|
int ins_c, int del_c, int sub_c, int max_d); |
||||||
|
#else |
||||||
|
static int levenshtein_internal(text *s, text *t, |
||||||
|
int ins_c, int del_c, int sub_c); |
||||||
|
#endif |
||||||
|
|
||||||
|
#define MAX_LEVENSHTEIN_STRLEN 255 |
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Calculates Levenshtein distance metric between supplied strings. Generally |
||||||
|
* (1, 1, 1) penalty costs suffices for common cases, but your mileage may |
||||||
|
* vary. |
||||||
|
* |
||||||
|
* One way to compute Levenshtein distance is to incrementally construct |
||||||
|
* an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number |
||||||
|
* of operations required to transform the first i characters of s into |
||||||
|
* the first j characters of t. The last column of the final row is the |
||||||
|
* answer. |
||||||
|
* |
||||||
|
* We use that algorithm here with some modification. In lieu of holding |
||||||
|
* the entire array in memory at once, we'll just use two arrays of size |
||||||
|
* m+1 for storing accumulated values. At each step one array represents |
||||||
|
* the "previous" row and one is the "current" row of the notional large |
||||||
|
* array. |
||||||
|
* |
||||||
|
* If max_d >= 0, we only need to provide an accurate answer when that answer |
||||||
|
* is less than or equal to the bound. From any cell in the matrix, there is |
||||||
|
* theoretical "minimum residual distance" from that cell to the last column |
||||||
|
* of the final row. This minimum residual distance is zero when the |
||||||
|
* untransformed portions of the strings are of equal length (because we might |
||||||
|
* get lucky and find all the remaining characters matching) and is otherwise |
||||||
|
* based on the minimum number of insertions or deletions needed to make them |
||||||
|
* equal length. The residual distance grows as we move toward the upper |
||||||
|
* right or lower left corners of the matrix. When the max_d bound is |
||||||
|
* usefully tight, we can use this property to avoid computing the entirety |
||||||
|
* of each row; instead, we maintain a start_column and stop_column that |
||||||
|
* identify the portion of the matrix close to the diagonal which can still |
||||||
|
* affect the final answer. |
||||||
|
*/ |
||||||
|
static int |
||||||
|
#ifdef LEVENSHTEIN_LESS_EQUAL |
||||||
|
levenshtein_less_equal_internal(text *s, text *t, |
||||||
|
int ins_c, int del_c, int sub_c, int max_d) |
||||||
|
#else |
||||||
|
levenshtein_internal(text *s, text *t, |
||||||
|
int ins_c, int del_c, int sub_c) |
||||||
|
#endif |
||||||
|
{ |
||||||
|
int m, |
||||||
|
n, |
||||||
|
s_bytes, |
||||||
|
t_bytes; |
||||||
|
int *prev; |
||||||
|
int *curr; |
||||||
|
int *s_char_len = NULL; |
||||||
|
int i, |
||||||
|
j; |
||||||
|
const char *s_data; |
||||||
|
const char *t_data; |
||||||
|
const char *y; |
||||||
|
|
||||||
|
/*
|
||||||
|
* For levenshtein_less_equal_internal, we have real variables called |
||||||
|
* start_column and stop_column; otherwise it's just short-hand for 0 |
||||||
|
* and m. |
||||||
|
*/ |
||||||
|
#ifdef LEVENSHTEIN_LESS_EQUAL |
||||||
|
int start_column, stop_column; |
||||||
|
#undef START_COLUMN |
||||||
|
#undef STOP_COLUMN |
||||||
|
#define START_COLUMN start_column |
||||||
|
#define STOP_COLUMN stop_column |
||||||
|
#else |
||||||
|
#undef START_COLUMN |
||||||
|
#undef STOP_COLUMN |
||||||
|
#define START_COLUMN 0 |
||||||
|
#define STOP_COLUMN m |
||||||
|
#endif |
||||||
|
|
||||||
|
/* Extract a pointer to the actual character data. */ |
||||||
|
s_data = VARDATA_ANY(s); |
||||||
|
t_data = VARDATA_ANY(t); |
||||||
|
|
||||||
|
/* Determine length of each string in bytes and characters. */ |
||||||
|
s_bytes = VARSIZE_ANY_EXHDR(s); |
||||||
|
t_bytes = VARSIZE_ANY_EXHDR(t); |
||||||
|
m = pg_mbstrlen_with_len(s_data, s_bytes); |
||||||
|
n = pg_mbstrlen_with_len(t_data, t_bytes); |
||||||
|
|
||||||
|
/*
|
||||||
|
* We can transform an empty s into t with n insertions, or a non-empty t |
||||||
|
* into an empty s with m deletions. |
||||||
|
*/ |
||||||
|
if (!m) |
||||||
|
return n * ins_c; |
||||||
|
if (!n) |
||||||
|
return m * del_c; |
||||||
|
|
||||||
|
/*
|
||||||
|
* For security concerns, restrict excessive CPU+RAM usage. (This |
||||||
|
* implementation uses O(m) memory and has O(mn) complexity.) |
||||||
|
*/ |
||||||
|
if (m > MAX_LEVENSHTEIN_STRLEN || |
||||||
|
n > MAX_LEVENSHTEIN_STRLEN) |
||||||
|
ereport(ERROR, |
||||||
|
(errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
||||||
|
errmsg("argument exceeds the maximum length of %d bytes", |
||||||
|
MAX_LEVENSHTEIN_STRLEN))); |
||||||
|
|
||||||
|
#ifdef LEVENSHTEIN_LESS_EQUAL |
||||||
|
/* Initialize start and stop columns. */ |
||||||
|
start_column = 0; |
||||||
|
stop_column = m + 1; |
||||||
|
|
||||||
|
/*
|
||||||
|
* If max_d >= 0, determine whether the bound is impossibly tight. If so, |
||||||
|
* return max_d + 1 immediately. Otherwise, determine whether it's tight |
||||||
|
* enough to limit the computation we must perform. If so, figure out |
||||||
|
* initial stop column. |
||||||
|
*/ |
||||||
|
if (max_d >= 0) |
||||||
|
{ |
||||||
|
int min_theo_d; /* Theoretical minimum distance. */ |
||||||
|
int max_theo_d; /* Theoretical maximum distance. */ |
||||||
|
int net_inserts = n - m; |
||||||
|
|
||||||
|
min_theo_d = net_inserts < 0 ? |
||||||
|
-net_inserts * del_c : net_inserts * ins_c; |
||||||
|
if (min_theo_d > max_d) |
||||||
|
return max_d + 1; |
||||||
|
if (ins_c + del_c < sub_c) |
||||||
|
sub_c = ins_c + del_c; |
||||||
|
max_theo_d = min_theo_d + sub_c * Min(m, n); |
||||||
|
if (max_d >= max_theo_d) |
||||||
|
max_d = -1; |
||||||
|
else if (ins_c + del_c > 0) |
||||||
|
{ |
||||||
|
/*
|
||||||
|
* Figure out how much of the first row of the notional matrix |
||||||
|
* we need to fill in. If the string is growing, the theoretical |
||||||
|
* minimum distance already incorporates the cost of deleting the |
||||||
|
* number of characters necessary to make the two strings equal |
||||||
|
* in length. Each additional deletion forces another insertion, |
||||||
|
* so the best-case total cost increases by ins_c + del_c. |
||||||
|
* If the string is shrinking, the minimum theoretical cost |
||||||
|
* assumes no excess deletions; that is, we're starting no futher |
||||||
|
* right than column n - m. If we do start further right, the |
||||||
|
* best-case total cost increases by ins_c + del_c for each move |
||||||
|
* right. |
||||||
|
*/ |
||||||
|
int slack_d = max_d - min_theo_d; |
||||||
|
int best_column = net_inserts < 0 ? -net_inserts : 0; |
||||||
|
stop_column = best_column + (slack_d / (ins_c + del_c)) + 1; |
||||||
|
if (stop_column > m) |
||||||
|
stop_column = m + 1; |
||||||
|
} |
||||||
|
} |
||||||
|
#endif |
||||||
|
|
||||||
|
/*
|
||||||
|
* In order to avoid calling pg_mblen() repeatedly on each character in s, |
||||||
|
* we cache all the lengths before starting the main loop -- but if all the |
||||||
|
* characters in both strings are single byte, then we skip this and use |
||||||
|
* a fast-path in the main loop. If only one string contains multi-byte |
||||||
|
* characters, we still build the array, so that the fast-path needn't |
||||||
|
* deal with the case where the array hasn't been initialized. |
||||||
|
*/ |
||||||
|
if (m != s_bytes || n != t_bytes) |
||||||
|
{ |
||||||
|
int i; |
||||||
|
const char *cp = s_data; |
||||||
|
|
||||||
|
s_char_len = (int *) palloc((m + 1) * sizeof(int)); |
||||||
|
for (i = 0; i < m; ++i) |
||||||
|
{ |
||||||
|
s_char_len[i] = pg_mblen(cp); |
||||||
|
cp += s_char_len[i]; |
||||||
|
} |
||||||
|
s_char_len[i] = 0; |
||||||
|
} |
||||||
|
|
||||||
|
/* One more cell for initialization column and row. */ |
||||||
|
++m; |
||||||
|
++n; |
||||||
|
|
||||||
|
/* Previous and current rows of notional array. */ |
||||||
|
prev = (int *) palloc(2 * m * sizeof(int)); |
||||||
|
curr = prev + m; |
||||||
|
|
||||||
|
/*
|
||||||
|
* To transform the first i characters of s into the first 0 characters |
||||||
|
* of t, we must perform i deletions. |
||||||
|
*/ |
||||||
|
for (i = START_COLUMN; i < STOP_COLUMN; i++) |
||||||
|
prev[i] = i * del_c; |
||||||
|
|
||||||
|
/* Loop through rows of the notional array */ |
||||||
|
for (y = t_data, j = 1; j < n; j++) |
||||||
|
{ |
||||||
|
int *temp; |
||||||
|
const char *x = s_data; |
||||||
|
int y_char_len = n != t_bytes + 1 ? pg_mblen(y) : 1; |
||||||
|
|
||||||
|
#ifdef LEVENSHTEIN_LESS_EQUAL |
||||||
|
/*
|
||||||
|
* In the best case, values percolate down the diagonal unchanged, so |
||||||
|
* we must increment stop_column unless it's already on the right end |
||||||
|
* of the array. The inner loop will read prev[stop_column], so we |
||||||
|
* have to initialize it even though it shouldn't affect the result. |
||||||
|
*/ |
||||||
|
if (stop_column < m) |
||||||
|
{ |
||||||
|
prev[stop_column] = max_d + 1; |
||||||
|
++stop_column; |
||||||
|
} |
||||||
|
|
||||||
|
/*
|
||||||
|
* The main loop fills in curr, but curr[0] needs a special case: |
||||||
|
* to transform the first 0 characters of s into the first j |
||||||
|
* characters of t, we must perform j insertions. However, if |
||||||
|
* start_column > 0, this special case does not apply. |
||||||
|
*/ |
||||||
|
if (start_column == 0) |
||||||
|
{ |
||||||
|
curr[0] = j * ins_c; |
||||||
|
i = 1; |
||||||
|
} |
||||||
|
else |
||||||
|
i = start_column; |
||||||
|
#else |
||||||
|
curr[0] = j * ins_c; |
||||||
|
i = 1; |
||||||
|
#endif |
||||||
|
|
||||||
|
/*
|
||||||
|
* This inner loop is critical to performance, so we include a |
||||||
|
* fast-path to handle the (fairly common) case where no multibyte |
||||||
|
* characters are in the mix. The fast-path is entitled to assume |
||||||
|
* that if s_char_len is not initialized then BOTH strings contain |
||||||
|
* only single-byte characters. |
||||||
|
*/ |
||||||
|
if (s_char_len != NULL) |
||||||
|
{ |
||||||
|
for (; i < STOP_COLUMN; i++) |
||||||
|
{ |
||||||
|
int ins; |
||||||
|
int del; |
||||||
|
int sub; |
||||||
|
int x_char_len = s_char_len[i - 1]; |
||||||
|
|
||||||
|
/*
|
||||||
|
* Calculate costs for insertion, deletion, and substitution. |
||||||
|
* |
||||||
|
* When calculating cost for substitution, we compare the last |
||||||
|
* character of each possibly-multibyte character first, |
||||||
|
* because that's enough to rule out most mis-matches. If we |
||||||
|
* get past that test, then we compare the lengths and the |
||||||
|
* remaining bytes. |
||||||
|
*/ |
||||||
|
ins = prev[i] + ins_c; |
||||||
|
del = curr[i - 1] + del_c; |
||||||
|
if (x[x_char_len-1] == y[y_char_len-1] |
||||||
|
&& x_char_len == y_char_len && |
||||||
|
(x_char_len == 1 || rest_of_char_same(x, y, x_char_len))) |
||||||
|
sub = prev[i - 1]; |
||||||
|
else |
||||||
|
sub = prev[i - 1] + sub_c; |
||||||
|
|
||||||
|
/* Take the one with minimum cost. */ |
||||||
|
curr[i] = Min(ins, del); |
||||||
|
curr[i] = Min(curr[i], sub); |
||||||
|
|
||||||
|
/* Point to next character. */ |
||||||
|
x += x_char_len; |
||||||
|
} |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
for (; i < STOP_COLUMN; i++) |
||||||
|
{ |
||||||
|
int ins; |
||||||
|
int del; |
||||||
|
int sub; |
||||||
|
|
||||||
|
/* Calculate costs for insertion, deletion, and substitution. */ |
||||||
|
ins = prev[i] + ins_c; |
||||||
|
del = curr[i - 1] + del_c; |
||||||
|
sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c); |
||||||
|
|
||||||
|
/* Take the one with minimum cost. */ |
||||||
|
curr[i] = Min(ins, del); |
||||||
|
curr[i] = Min(curr[i], sub); |
||||||
|
|
||||||
|
/* Point to next character. */ |
||||||
|
x++; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
/* Swap current row with previous row. */ |
||||||
|
temp = curr; |
||||||
|
curr = prev; |
||||||
|
prev = temp; |
||||||
|
|
||||||
|
/* Point to next character. */ |
||||||
|
y += y_char_len; |
||||||
|
|
||||||
|
#ifdef LEVENSHTEIN_LESS_EQUAL |
||||||
|
/*
|
||||||
|
* This chunk of code represents a significant performance hit if used |
||||||
|
* in the case where there is no max_d bound. This is probably not |
||||||
|
* because the max_d >= 0 test itself is expensive, but rather because |
||||||
|
* the possibility of needing to execute this code prevents tight |
||||||
|
* optimization of the loop as a whole. |
||||||
|
*/ |
||||||
|
if (max_d >= 0) |
||||||
|
{ |
||||||
|
/*
|
||||||
|
* The "zero point" is the column of the current row where the |
||||||
|
* remaining portions of the strings are of equal length. There |
||||||
|
* are (n - 1) characters in the target string, of which j have |
||||||
|
* been transformed. There are (m - 1) characters in the source |
||||||
|
* string, so we want to find the value for zp where where (n - 1) |
||||||
|
* - j = (m - 1) - zp. |
||||||
|
*/ |
||||||
|
int zp = j - (n - m); |
||||||
|
|
||||||
|
/* Check whether the stop column can slide left. */ |
||||||
|
while (stop_column > 0) |
||||||
|
{ |
||||||
|
int ii = stop_column - 1; |
||||||
|
int net_inserts = ii - zp; |
||||||
|
if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c : |
||||||
|
-net_inserts * del_c) <= max_d) |
||||||
|
break; |
||||||
|
stop_column--; |
||||||
|
} |
||||||
|
|
||||||
|
/* Check whether the start column can slide right. */ |
||||||
|
while (start_column < stop_column) |
||||||
|
{ |
||||||
|
int net_inserts = start_column - zp; |
||||||
|
if (prev[start_column] + |
||||||
|
(net_inserts > 0 ? net_inserts * ins_c : |
||||||
|
-net_inserts * del_c) <= max_d) |
||||||
|
break; |
||||||
|
/*
|
||||||
|
* We'll never again update these values, so we must make |
||||||
|
* sure there's nothing here that could confuse any future |
||||||
|
* iteration of the outer loop. |
||||||
|
*/ |
||||||
|
prev[start_column] = max_d + 1; |
||||||
|
curr[start_column] = max_d + 1; |
||||||
|
if (start_column != 0) |
||||||
|
s_data += n != t_bytes + 1 ? pg_mblen(s_data) : 1; |
||||||
|
start_column++; |
||||||
|
} |
||||||
|
|
||||||
|
/* If they cross, we're going to exceed the bound. */ |
||||||
|
if (start_column >= stop_column) |
||||||
|
return max_d + 1; |
||||||
|
} |
||||||
|
#endif |
||||||
|
} |
||||||
|
|
||||||
|
/*
|
||||||
|
* Because the final value was swapped from the previous row to the |
||||||
|
* current row, that's where we'll find it. |
||||||
|
*/ |
||||||
|
return prev[m - 1]; |
||||||
|
} |
Loading…
Reference in new issue