mirror of https://github.com/postgres/postgres
parent
f82b853b47
commit
79fae4a764
@ -0,0 +1,225 @@ |
|||||||
|
$PostgreSQL: pgsql/src/backend/access/gist/README,v 1.1 2005/09/15 16:39:15 teodor Exp $ |
||||||
|
|
||||||
|
This directory contains an implementation of GiST indexing for Postgres. |
||||||
|
|
||||||
|
GiST is stands for Generalized Search Tree. It was introduced in seminal paper |
||||||
|
"Generalized Search Trees for Database Systems", 1995,Joseph M. Hellerstein, |
||||||
|
Jeffrey F. Naughton,Avi Pfeffer (http://www.sai.msu.su/~megera/postgres/gist/papers/gist.ps) and implemented by J. Hellerstein and P.Aoki in early version of |
||||||
|
PostgreSQL ( more details is available from The GiST Indexing Project at |
||||||
|
Berkeley at http://gist.cs.berkeley.edu/). As an "university" project it had a |
||||||
|
limited number of features and was in rare use. |
||||||
|
|
||||||
|
Current implementation of GiST supports: |
||||||
|
|
||||||
|
* Variable length keys |
||||||
|
* Composite keys (multi-key) |
||||||
|
* provides NULL-safe interface to GiST core |
||||||
|
* Concurrency |
||||||
|
* Recovery support via WAL logging |
||||||
|
|
||||||
|
Concurrence algoritms implemented in PostgreSQL were developed following paper |
||||||
|
"Access Methods for Next-Generation Database Systems" by Marcel Kornaker (http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz). |
||||||
|
|
||||||
|
Original algorithms were modified by following reasons: |
||||||
|
|
||||||
|
* They should be adapted to PostgreSQL conventions. For example, SEARCH |
||||||
|
algorithm was considerably changed, because in PostgreSQL function search |
||||||
|
should return one tuple (next), not all tuples at once. Also, it should |
||||||
|
release page locks between calls. |
||||||
|
* since we added support of variable length keys, it's not possible to guarantee |
||||||
|
enough free space for all keys on pages after splitting. User defined function |
||||||
|
picksplit doesn't have information about size of tuples (each tuple may |
||||||
|
contain several keys as in multicolumn index while picksplit could work with |
||||||
|
only one key ) and pages. |
||||||
|
* We modified original INSERT algorithm for perfomance reason. In particularly, |
||||||
|
it's single-pass algorithm. |
||||||
|
* Since the paper were theoretical, some details were omited and we have to find |
||||||
|
out ourself how to solve some specific problems. |
||||||
|
|
||||||
|
Because of above reasons, we have to revised interaction of GiST core and |
||||||
|
PostgreSQL WAL system. Moreover, we encountered (and solved) a problem of |
||||||
|
uncompleted insertions when recovering after crash, which was not touched in |
||||||
|
the paper. |
||||||
|
|
||||||
|
SEARCH ALGORITHM |
||||||
|
Function gettuple finds tuple, which satisfy search predicate. It store their |
||||||
|
state and returns next tuple under subsequent calls. Stack contains page, |
||||||
|
its LSN and LSN of parent page and currentposition is saved between calls. |
||||||
|
|
||||||
|
gettuple(search-pred) |
||||||
|
if ( firsttime ) |
||||||
|
push(stack, [root, 0, 0]) // page, LSN, parentLSN |
||||||
|
currentposition=0 |
||||||
|
end |
||||||
|
ptr = top of stack |
||||||
|
while(true) |
||||||
|
latch( ptr->page, S-mode ) |
||||||
|
if ( ptr->page->lsn != ptr->lsn ) |
||||||
|
ptr->lsn = ptr->page->lsn |
||||||
|
currentposition=0 |
||||||
|
if ( ptr->parentlsn < ptr->page->nsn ) |
||||||
|
add to stack rightlink |
||||||
|
else |
||||||
|
currentposition++ |
||||||
|
end |
||||||
|
|
||||||
|
while(true) |
||||||
|
currentposition = find_first_match( currentposition ) |
||||||
|
if ( currentposition is invalid ) |
||||||
|
unlatch( ptr->page ) |
||||||
|
pop stack |
||||||
|
ptr = top of stack |
||||||
|
if (ptr is NULL) |
||||||
|
return NULL |
||||||
|
break loop |
||||||
|
else if ( ptr->page is leaf ) |
||||||
|
unlatch( ptr->page ) |
||||||
|
return tuple |
||||||
|
else |
||||||
|
add to stack child page |
||||||
|
end |
||||||
|
currentposition++ |
||||||
|
end |
||||||
|
end |
||||||
|
|
||||||
|
|
||||||
|
INSERT ALGORITHM |
||||||
|
|
||||||
|
INSERT guarantees that the GiST tree remains balanced. User defined key method |
||||||
|
Penalty is used for choosing a subtree to insert; method PickSplit is used for |
||||||
|
the node splitting algorithm; method Union is used for propagating changes |
||||||
|
upward to maintain the tree properties. |
||||||
|
|
||||||
|
NOTICE: We modified original INSERT algorithm for perfomance reason. In |
||||||
|
particularly, it's single-pass algorithm. |
||||||
|
|
||||||
|
Function findLeaf is used to identify subtree for insertion. Page, in which |
||||||
|
insertion is proceeded, is locked as well as its parent page. Functions |
||||||
|
findParent and findPath are used to find parent pages, which could be changed |
||||||
|
because of concurrent access. Function pageSplit is reccurrent and could split |
||||||
|
page by more than 2 pages, which could be necessary if keys have different |
||||||
|
lengths or more than one key are inserted (in such situation, user defined |
||||||
|
function pickSplit cannot guarantee free space on page). |
||||||
|
|
||||||
|
findLeaf(new-key) |
||||||
|
push(stack, [root, 0]) //page, LSN |
||||||
|
while(true) |
||||||
|
ptr = top of stack |
||||||
|
latch( ptr->page, S-mode ) |
||||||
|
ptr->lsn = ptr->page->lsn |
||||||
|
if ( exists ptr->parent AND ptr->parent->lsn < ptr->page->nsn ) |
||||||
|
unlatch( ptr->page ) |
||||||
|
pop stack |
||||||
|
else if ( ptr->page is not leaf ) |
||||||
|
push( stack, [get_best_child(ptr->page, new-key), 0] ) |
||||||
|
unlatch( ptr->page ) |
||||||
|
else |
||||||
|
unlatch( ptr->page ) |
||||||
|
latch( ptr->page, X-mode ) |
||||||
|
if ( ptr->page is not leaf ) |
||||||
|
//the only root page can become a non-leaf |
||||||
|
unlatch( ptr->page ) |
||||||
|
else if ( ptr->parent->lsn < ptr->page->nsn ) |
||||||
|
unlatch( ptr->page ) |
||||||
|
pop stack |
||||||
|
else |
||||||
|
return stack |
||||||
|
end |
||||||
|
end |
||||||
|
end |
||||||
|
|
||||||
|
findPath( stack item ) |
||||||
|
push stack, [root, 0, 0] // page, LSN, parent |
||||||
|
while( stack ) |
||||||
|
ptr = top of stack |
||||||
|
latch( ptr->page, S-mode ) |
||||||
|
if ( ptr->parent->page->lsn < ptr->page->nsn ) |
||||||
|
push stack, [ ptr->page->rightlink, 0, ptr->parent ] |
||||||
|
end |
||||||
|
for( each tuple on page ) |
||||||
|
if ( tuple->pagepointer == item->page ) |
||||||
|
return stack |
||||||
|
else |
||||||
|
add to stack at the end [tuple->pagepointer,0, ptr] |
||||||
|
end |
||||||
|
end |
||||||
|
unlatch( ptr->page ) |
||||||
|
pop stack |
||||||
|
end |
||||||
|
|
||||||
|
findParent( stack item ) |
||||||
|
parent = item->parent |
||||||
|
latch( parent->page, X-mode ) |
||||||
|
if ( parent->page->lsn != parent->lsn ) |
||||||
|
while(true) |
||||||
|
search parent tuple on parent->page, if found the return |
||||||
|
rightlink = parent->page->rightlink |
||||||
|
unlatch( parent->page ) |
||||||
|
if ( rightlink is incorrect ) |
||||||
|
break loop |
||||||
|
end |
||||||
|
parent->page = rightlink |
||||||
|
latch( parent->page, X-mode ) |
||||||
|
end |
||||||
|
newstack = findPath( item->parent ) |
||||||
|
replace part of stack to new one |
||||||
|
return findParent( item ) |
||||||
|
end |
||||||
|
|
||||||
|
pageSplit(page, allkeys) |
||||||
|
(lkeys, rkeys) = pickSplit( allkeys ) |
||||||
|
if ( page is root ) |
||||||
|
lpage = new page |
||||||
|
else |
||||||
|
lpage = page |
||||||
|
rpage = new page |
||||||
|
if ( no space left on rpage ) |
||||||
|
newkeys = pageSplit( rpage, rkeys ) |
||||||
|
else |
||||||
|
push newkeys, union(rkeys) |
||||||
|
end |
||||||
|
if ( no space left on lpage ) |
||||||
|
push newkeys, pageSplit( lpage, lkeys ) |
||||||
|
else |
||||||
|
push newkeys, union(lkeys) |
||||||
|
end |
||||||
|
return newkeys |
||||||
|
|
||||||
|
|
||||||
|
placetopage(page, keysarray) |
||||||
|
if ( no space left on page ) |
||||||
|
keysarray = pageSplit(page, [ extract_keys(page), keysarray]) |
||||||
|
last page in chain gets old NSN, |
||||||
|
original and others - new NSN from current LSN |
||||||
|
if ( page is root ) |
||||||
|
make new root with keysarray |
||||||
|
end |
||||||
|
else |
||||||
|
put keysarray on page |
||||||
|
if ( length of keysarray > 1 ) |
||||||
|
keysarray = [ union(keysarray) ] |
||||||
|
end |
||||||
|
end |
||||||
|
|
||||||
|
insert(new-key) |
||||||
|
stack = findLeaf(new-key) |
||||||
|
keysarray = [new-key] |
||||||
|
ptr = top of stack |
||||||
|
while(true) |
||||||
|
findParent( ptr ) //findParent latches parent page |
||||||
|
keysarray = placetopage(ptr->page, keysarray) |
||||||
|
unlatch( ptr->page ) |
||||||
|
pop stack; |
||||||
|
ptr = top of stack |
||||||
|
if (length of keysarray == 1) |
||||||
|
newboundingkey = union(oldboundingkey, keysarray) |
||||||
|
if (newboundingkey == oldboundingkey) |
||||||
|
unlatch ptr->page |
||||||
|
break loop |
||||||
|
end |
||||||
|
end |
||||||
|
end |
||||||
|
|
||||||
|
Authors: |
||||||
|
Teodor Sigaev <teodor@sigaev.ru> |
||||||
|
Oleg Bartunov <oleg@sai.msu.su> |
Loading…
Reference in new issue