mirror of https://github.com/postgres/postgres
Tag:
Branch:
Tree:
cc721c459d
REL2_0B
REL6_4
REL6_5_PATCHES
REL7_0_PATCHES
REL7_1_STABLE
REL7_2_STABLE
REL7_3_STABLE
REL7_4_STABLE
REL8_0_STABLE
REL8_1_STABLE
REL8_2_STABLE
REL8_3_STABLE
REL8_4_STABLE
REL8_5_ALPHA1_BRANCH
REL8_5_ALPHA2_BRANCH
REL8_5_ALPHA3_BRANCH
REL9_0_ALPHA4_BRANCH
REL9_0_ALPHA5_BRANCH
REL9_0_STABLE
REL9_1_STABLE
REL9_2_STABLE
REL9_3_STABLE
REL9_4_STABLE
REL9_5_STABLE
REL9_6_STABLE
REL_10_STABLE
REL_11_STABLE
REL_12_STABLE
REL_13_STABLE
REL_14_STABLE
REL_15_STABLE
REL_16_STABLE
REL_17_STABLE
REL_18_STABLE
Release_1_0_3
WIN32_DEV
ecpg_big_bison
master
PG95-1_01
PG95-1_08
PG95-1_09
REL2_0
REL6_1
REL6_1_1
REL6_2
REL6_2_1
REL6_3
REL6_3_2
REL6_4_2
REL6_5
REL6_5_1
REL6_5_2
REL6_5_3
REL7_0
REL7_0_2
REL7_0_3
REL7_1
REL7_1_1
REL7_1_2
REL7_1_3
REL7_1_BETA
REL7_1_BETA2
REL7_1_BETA3
REL7_2
REL7_2_1
REL7_2_2
REL7_2_3
REL7_2_4
REL7_2_5
REL7_2_6
REL7_2_7
REL7_2_8
REL7_2_BETA1
REL7_2_BETA2
REL7_2_BETA3
REL7_2_BETA4
REL7_2_BETA5
REL7_2_RC1
REL7_2_RC2
REL7_3
REL7_3_1
REL7_3_10
REL7_3_11
REL7_3_12
REL7_3_13
REL7_3_14
REL7_3_15
REL7_3_16
REL7_3_17
REL7_3_18
REL7_3_19
REL7_3_2
REL7_3_20
REL7_3_21
REL7_3_3
REL7_3_4
REL7_3_5
REL7_3_6
REL7_3_7
REL7_3_8
REL7_3_9
REL7_4
REL7_4_1
REL7_4_10
REL7_4_11
REL7_4_12
REL7_4_13
REL7_4_14
REL7_4_15
REL7_4_16
REL7_4_17
REL7_4_18
REL7_4_19
REL7_4_2
REL7_4_20
REL7_4_21
REL7_4_22
REL7_4_23
REL7_4_24
REL7_4_25
REL7_4_26
REL7_4_27
REL7_4_28
REL7_4_29
REL7_4_3
REL7_4_30
REL7_4_4
REL7_4_5
REL7_4_6
REL7_4_7
REL7_4_8
REL7_4_9
REL7_4_BETA1
REL7_4_BETA2
REL7_4_BETA3
REL7_4_BETA4
REL7_4_BETA5
REL7_4_RC1
REL7_4_RC2
REL8_0_0
REL8_0_0BETA1
REL8_0_0BETA2
REL8_0_0BETA3
REL8_0_0BETA4
REL8_0_0BETA5
REL8_0_0RC1
REL8_0_0RC2
REL8_0_0RC3
REL8_0_0RC4
REL8_0_0RC5
REL8_0_1
REL8_0_10
REL8_0_11
REL8_0_12
REL8_0_13
REL8_0_14
REL8_0_15
REL8_0_16
REL8_0_17
REL8_0_18
REL8_0_19
REL8_0_2
REL8_0_20
REL8_0_21
REL8_0_22
REL8_0_23
REL8_0_24
REL8_0_25
REL8_0_26
REL8_0_3
REL8_0_4
REL8_0_5
REL8_0_6
REL8_0_7
REL8_0_8
REL8_0_9
REL8_1_0
REL8_1_0BETA1
REL8_1_0BETA2
REL8_1_0BETA3
REL8_1_0BETA4
REL8_1_0RC1
REL8_1_1
REL8_1_10
REL8_1_11
REL8_1_12
REL8_1_13
REL8_1_14
REL8_1_15
REL8_1_16
REL8_1_17
REL8_1_18
REL8_1_19
REL8_1_2
REL8_1_20
REL8_1_21
REL8_1_22
REL8_1_23
REL8_1_3
REL8_1_4
REL8_1_5
REL8_1_6
REL8_1_7
REL8_1_8
REL8_1_9
REL8_2_0
REL8_2_1
REL8_2_10
REL8_2_11
REL8_2_12
REL8_2_13
REL8_2_14
REL8_2_15
REL8_2_16
REL8_2_17
REL8_2_18
REL8_2_19
REL8_2_2
REL8_2_20
REL8_2_21
REL8_2_22
REL8_2_23
REL8_2_3
REL8_2_4
REL8_2_5
REL8_2_6
REL8_2_7
REL8_2_8
REL8_2_9
REL8_2_BETA1
REL8_2_BETA2
REL8_2_BETA3
REL8_2_RC1
REL8_3_0
REL8_3_1
REL8_3_10
REL8_3_11
REL8_3_12
REL8_3_13
REL8_3_14
REL8_3_15
REL8_3_16
REL8_3_17
REL8_3_18
REL8_3_19
REL8_3_2
REL8_3_20
REL8_3_21
REL8_3_22
REL8_3_23
REL8_3_3
REL8_3_4
REL8_3_5
REL8_3_6
REL8_3_7
REL8_3_8
REL8_3_9
REL8_3_BETA1
REL8_3_BETA2
REL8_3_BETA3
REL8_3_BETA4
REL8_3_RC1
REL8_3_RC2
REL8_4_0
REL8_4_1
REL8_4_10
REL8_4_11
REL8_4_12
REL8_4_13
REL8_4_14
REL8_4_15
REL8_4_16
REL8_4_17
REL8_4_18
REL8_4_19
REL8_4_2
REL8_4_20
REL8_4_21
REL8_4_22
REL8_4_3
REL8_4_4
REL8_4_5
REL8_4_6
REL8_4_7
REL8_4_8
REL8_4_9
REL8_4_BETA1
REL8_4_BETA2
REL8_4_RC1
REL8_4_RC2
REL8_5_ALPHA1
REL8_5_ALPHA2
REL8_5_ALPHA3
REL9_0_0
REL9_0_1
REL9_0_10
REL9_0_11
REL9_0_12
REL9_0_13
REL9_0_14
REL9_0_15
REL9_0_16
REL9_0_17
REL9_0_18
REL9_0_19
REL9_0_2
REL9_0_20
REL9_0_21
REL9_0_22
REL9_0_23
REL9_0_3
REL9_0_4
REL9_0_5
REL9_0_6
REL9_0_7
REL9_0_8
REL9_0_9
REL9_0_ALPHA4
REL9_0_ALPHA5
REL9_0_BETA1
REL9_0_BETA2
REL9_0_BETA3
REL9_0_BETA4
REL9_0_RC1
REL9_1_0
REL9_1_1
REL9_1_10
REL9_1_11
REL9_1_12
REL9_1_13
REL9_1_14
REL9_1_15
REL9_1_16
REL9_1_17
REL9_1_18
REL9_1_19
REL9_1_2
REL9_1_20
REL9_1_21
REL9_1_22
REL9_1_23
REL9_1_24
REL9_1_3
REL9_1_4
REL9_1_5
REL9_1_6
REL9_1_7
REL9_1_8
REL9_1_9
REL9_1_ALPHA1
REL9_1_ALPHA2
REL9_1_ALPHA3
REL9_1_ALPHA4
REL9_1_ALPHA5
REL9_1_BETA1
REL9_1_BETA2
REL9_1_BETA3
REL9_1_RC1
REL9_2_0
REL9_2_1
REL9_2_10
REL9_2_11
REL9_2_12
REL9_2_13
REL9_2_14
REL9_2_15
REL9_2_16
REL9_2_17
REL9_2_18
REL9_2_19
REL9_2_2
REL9_2_20
REL9_2_21
REL9_2_22
REL9_2_23
REL9_2_24
REL9_2_3
REL9_2_4
REL9_2_5
REL9_2_6
REL9_2_7
REL9_2_8
REL9_2_9
REL9_2_BETA1
REL9_2_BETA2
REL9_2_BETA3
REL9_2_BETA4
REL9_2_RC1
REL9_3_0
REL9_3_1
REL9_3_10
REL9_3_11
REL9_3_12
REL9_3_13
REL9_3_14
REL9_3_15
REL9_3_16
REL9_3_17
REL9_3_18
REL9_3_19
REL9_3_2
REL9_3_20
REL9_3_21
REL9_3_22
REL9_3_23
REL9_3_24
REL9_3_25
REL9_3_3
REL9_3_4
REL9_3_5
REL9_3_6
REL9_3_7
REL9_3_8
REL9_3_9
REL9_3_BETA1
REL9_3_BETA2
REL9_3_RC1
REL9_4_0
REL9_4_1
REL9_4_10
REL9_4_11
REL9_4_12
REL9_4_13
REL9_4_14
REL9_4_15
REL9_4_16
REL9_4_17
REL9_4_18
REL9_4_19
REL9_4_2
REL9_4_20
REL9_4_21
REL9_4_22
REL9_4_23
REL9_4_24
REL9_4_25
REL9_4_26
REL9_4_3
REL9_4_4
REL9_4_5
REL9_4_6
REL9_4_7
REL9_4_8
REL9_4_9
REL9_4_BETA1
REL9_4_BETA2
REL9_4_BETA3
REL9_4_RC1
REL9_5_0
REL9_5_1
REL9_5_10
REL9_5_11
REL9_5_12
REL9_5_13
REL9_5_14
REL9_5_15
REL9_5_16
REL9_5_17
REL9_5_18
REL9_5_19
REL9_5_2
REL9_5_20
REL9_5_21
REL9_5_22
REL9_5_23
REL9_5_24
REL9_5_25
REL9_5_3
REL9_5_4
REL9_5_5
REL9_5_6
REL9_5_7
REL9_5_8
REL9_5_9
REL9_5_ALPHA1
REL9_5_ALPHA2
REL9_5_BETA1
REL9_5_BETA2
REL9_5_RC1
REL9_6_0
REL9_6_1
REL9_6_10
REL9_6_11
REL9_6_12
REL9_6_13
REL9_6_14
REL9_6_15
REL9_6_16
REL9_6_17
REL9_6_18
REL9_6_19
REL9_6_2
REL9_6_20
REL9_6_21
REL9_6_22
REL9_6_23
REL9_6_24
REL9_6_3
REL9_6_4
REL9_6_5
REL9_6_6
REL9_6_7
REL9_6_8
REL9_6_9
REL9_6_BETA1
REL9_6_BETA2
REL9_6_BETA3
REL9_6_BETA4
REL9_6_RC1
REL_10_0
REL_10_1
REL_10_10
REL_10_11
REL_10_12
REL_10_13
REL_10_14
REL_10_15
REL_10_16
REL_10_17
REL_10_18
REL_10_19
REL_10_2
REL_10_20
REL_10_21
REL_10_22
REL_10_23
REL_10_3
REL_10_4
REL_10_5
REL_10_6
REL_10_7
REL_10_8
REL_10_9
REL_10_BETA1
REL_10_BETA2
REL_10_BETA3
REL_10_BETA4
REL_10_RC1
REL_11_0
REL_11_1
REL_11_10
REL_11_11
REL_11_12
REL_11_13
REL_11_14
REL_11_15
REL_11_16
REL_11_17
REL_11_18
REL_11_19
REL_11_2
REL_11_20
REL_11_21
REL_11_22
REL_11_3
REL_11_4
REL_11_5
REL_11_6
REL_11_7
REL_11_8
REL_11_9
REL_11_BETA1
REL_11_BETA2
REL_11_BETA3
REL_11_BETA4
REL_11_RC1
REL_12_0
REL_12_1
REL_12_10
REL_12_11
REL_12_12
REL_12_13
REL_12_14
REL_12_15
REL_12_16
REL_12_17
REL_12_18
REL_12_19
REL_12_2
REL_12_20
REL_12_21
REL_12_22
REL_12_3
REL_12_4
REL_12_5
REL_12_6
REL_12_7
REL_12_8
REL_12_9
REL_12_BETA1
REL_12_BETA2
REL_12_BETA3
REL_12_BETA4
REL_12_RC1
REL_13_0
REL_13_1
REL_13_10
REL_13_11
REL_13_12
REL_13_13
REL_13_14
REL_13_15
REL_13_16
REL_13_17
REL_13_18
REL_13_19
REL_13_2
REL_13_20
REL_13_21
REL_13_22
REL_13_23
REL_13_3
REL_13_4
REL_13_5
REL_13_6
REL_13_7
REL_13_8
REL_13_9
REL_13_BETA1
REL_13_BETA2
REL_13_BETA3
REL_13_RC1
REL_14_0
REL_14_1
REL_14_10
REL_14_11
REL_14_12
REL_14_13
REL_14_14
REL_14_15
REL_14_16
REL_14_17
REL_14_18
REL_14_19
REL_14_2
REL_14_20
REL_14_3
REL_14_4
REL_14_5
REL_14_6
REL_14_7
REL_14_8
REL_14_9
REL_14_BETA1
REL_14_BETA2
REL_14_BETA3
REL_14_RC1
REL_15_0
REL_15_1
REL_15_10
REL_15_11
REL_15_12
REL_15_13
REL_15_14
REL_15_15
REL_15_2
REL_15_3
REL_15_4
REL_15_5
REL_15_6
REL_15_7
REL_15_8
REL_15_9
REL_15_BETA1
REL_15_BETA2
REL_15_BETA3
REL_15_BETA4
REL_15_RC1
REL_15_RC2
REL_16_0
REL_16_1
REL_16_10
REL_16_11
REL_16_2
REL_16_3
REL_16_4
REL_16_5
REL_16_6
REL_16_7
REL_16_8
REL_16_9
REL_16_BETA1
REL_16_BETA2
REL_16_BETA3
REL_16_RC1
REL_17_0
REL_17_1
REL_17_2
REL_17_3
REL_17_4
REL_17_5
REL_17_6
REL_17_7
REL_17_BETA1
REL_17_BETA2
REL_17_BETA3
REL_17_RC1
REL_18_0
REL_18_1
REL_18_BETA1
REL_18_BETA2
REL_18_BETA3
REL_18_RC1
Release_1_0_2
Release_2_0
Release_2_0_0
release-6-3
${ noResults }
215 Commits (cc721c459d3783bbdb4beb1bbfa802a5328d15a2)
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
c65bc2e1d1 |
Make it possible for loadable modules to add EXPLAIN options.
Modules can use RegisterExtensionExplainOption to register new EXPLAIN options, and GetExplainExtensionId, GetExplainExtensionState, and SetExplainExtensionState to store related state inside the ExplainState object. Since this substantially increases the amount of code that needs to handle ExplainState-related tasks, move a few bits of existing code to a new file explain_state.c and add the rest of this infrastructure there. See the comments at the top of explain_state.c for further explanation of how this mechanism works. This does not yet provide a way for such such options to do anything useful. The intention is that we'll add hooks for that purpose in a separate commit. Discussion: http://postgr.es/m/CA+TgmoYSzg58hPuBmei46o8D3SKX+SZoO4K_aGQGwiRzvRApLg@mail.gmail.com Reviewed-by: Srinath Reddy <srinath2133@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Sami Imseih <samimseih@gmail.com> |
9 months ago |
|
|
525392d572 |
Don't lock partitions pruned by initial pruning
Before executing a cached generic plan, AcquireExecutorLocks() in plancache.c locks all relations in a plan's range table to ensure the plan is safe for execution. However, this locks runtime-prunable relations that will later be pruned during "initial" runtime pruning, introducing unnecessary overhead. This commit defers locking for such relations to executor startup and ensures that if the CachedPlan is invalidated due to concurrent DDL during this window, replanning is triggered. Deferring these locks avoids unnecessary locking overhead for pruned partitions, resulting in significant speedup, particularly when many partitions are pruned during initial runtime pruning. * Changes to locking when executing generic plans: AcquireExecutorLocks() now locks only unprunable relations, that is, those found in PlannedStmt.unprunableRelids (introduced in commit |
10 months ago |
|
|
50e6eb731d |
Update copyright for 2025
Backpatch-through: 13 |
12 months ago |
|
|
3eea7a0c97 |
Simplify executor's determination of whether to use parallelism.
Our parallel-mode code only works when we are executing a query in full, so ExecutePlan must disable parallel mode when it is asked to do partial execution. The previous logic for this involved passing down a flag (variously named execute_once or run_once) from callers of ExecutorRun or PortalRun. This is overcomplicated, and unsurprisingly some of the callers didn't get it right, since it requires keeping state that not all of them have handy; not to mention that the requirements for it were undocumented. That led to assertion failures in some corner cases. The only state we really need for this is the existing QueryDesc.already_executed flag, so let's just put all the responsibility in ExecutePlan. (It could have been done in ExecutorRun too, leading to a slightly shorter patch -- but if there's ever more than one caller of ExecutePlan, it seems better to have this logic in the subroutine than the callers.) This makes those ExecutorRun/PortalRun parameters unnecessary. In master it seems okay to just remove them, returning the API for those functions to what it was before parallelism. Such an API break is clearly not okay in stable branches, but for them we can just leave the parameters in place after documenting that they do nothing. Per report from Yugo Nagata, who also reviewed and tested this patch. Back-patch to all supported branches. Discussion: https://postgr.es/m/20241206062549.710dc01cf91224809dd6c0e1@sraoss.co.jp |
1 year ago |
|
|
3a7ae6b3d9 |
Revert pg_wal_replay_wait() stored procedure
This commit reverts |
1 year ago |
|
|
3c5db1d6b0 |
Implement pg_wal_replay_wait() stored procedure
pg_wal_replay_wait() is to be used on standby and specifies waiting for the specific WAL location to be replayed. This option is useful when the user makes some data changes on primary and needs a guarantee to see these changes are on standby. The queue of waiters is stored in the shared memory as an LSN-ordered pairing heap, where the waiter with the nearest LSN stays on the top. During the replay of WAL, waiters whose LSNs have already been replayed are deleted from the shared memory pairing heap and woken up by setting their latches. pg_wal_replay_wait() needs to wait without any snapshot held. Otherwise, the snapshot could prevent the replay of WAL records, implying a kind of self-deadlock. This is why it is only possible to implement pg_wal_replay_wait() as a procedure working without an active snapshot, not a function. Catversion is bumped. Discussion: https://postgr.es/m/eb12f9b03851bb2583adab5df9579b4b%40postgrespro.ru Author: Kartyshov Ivan, Alexander Korotkov Reviewed-by: Michael Paquier, Peter Eisentraut, Dilip Kumar, Amit Kapila Reviewed-by: Alexander Lakhin, Bharath Rupireddy, Euler Taveira Reviewed-by: Heikki Linnakangas, Kyotaro Horiguchi |
1 year ago |
|
|
29275b1d17 |
Update copyright for 2024
Reported-by: Michael Paquier Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz Backpatch-through: 12 |
2 years ago |
|
|
0d15afc875 |
Simplify useless 0L constants
In ancient times, these belonged to arguments or fields that were actually of type long, but now they are not anymore, so this "L" decoration is just confusing. (Some other 0L and other "L" constants remain, where they are actually associated with a long type.) |
3 years ago |
|
|
c8e1ba736b |
Update copyright for 2023
Backpatch-through: 11 |
3 years ago |
|
|
b1099eca8f |
Remove AssertArg and AssertState
These don't offer anything over plain Assert, and their usage had already been declared obsolescent. Author: Nathan Bossart <nathandbossart@gmail.com> Reviewed-by: Michael Paquier <michael@paquier.xyz> Discussion: https://www.postgresql.org/message-id/20221009210148.GA900071@nathanxps13 |
3 years ago |
|
|
7103ebb7aa
|
Add support for MERGE SQL command
MERGE performs actions that modify rows in the target table using a source table or query. MERGE provides a single SQL statement that can conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise require multiple PL statements. For example, MERGE INTO target AS t USING source AS s ON t.tid = s.sid WHEN MATCHED AND t.balance > s.delta THEN UPDATE SET balance = t.balance - s.delta WHEN MATCHED THEN DELETE WHEN NOT MATCHED AND s.delta > 0 THEN INSERT VALUES (s.sid, s.delta) WHEN NOT MATCHED THEN DO NOTHING; MERGE works with regular tables, partitioned tables and inheritance hierarchies, including column and row security enforcement, as well as support for row and statement triggers and transition tables therein. MERGE is optimized for OLTP and is parameterizable, though also useful for large scale ETL/ELT. MERGE is not intended to be used in preference to existing single SQL commands for INSERT, UPDATE or DELETE since there is some overhead. MERGE can be used from PL/pgSQL. MERGE does not support targetting updatable views or foreign tables, and RETURNING clauses are not allowed either. These limitations are likely fixable with sufficient effort. Rewrite rules are also not supported, but it's not clear that we'd want to support them. Author: Pavan Deolasee <pavan.deolasee@gmail.com> Author: Álvaro Herrera <alvherre@alvh.no-ip.org> Author: Amit Langote <amitlangote09@gmail.com> Author: Simon Riggs <simon.riggs@enterprisedb.com> Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com> Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions) Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions) Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions) Reviewed-by: Japin Li <japinli@hotmail.com> Reviewed-by: Justin Pryzby <pryzby@telsasoft.com> Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com> Reviewed-by: Zhihong Yu <zyu@yugabyte.com> Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql |
4 years ago |
|
|
27b77ecf9f |
Update copyright for 2022
Backpatch-through: 10 |
4 years ago |
|
|
7b5d4c29ed |
Fix Portal snapshot tracking to handle subtransactions properly.
Commit
|
4 years ago |
|
|
c1b7a6c273 |
Fix some anomalies with NO SCROLL cursors.
We have long forbidden fetching backwards from a NO SCROLL cursor, but the prohibition didn't extend to cases in which we rewind the query altogether and then re-fetch forwards. I think the reason is that this logic was mainly meant to protect plan nodes that can't be run in the reverse direction. However, re-reading the query output is problematic if the query is volatile (which includes SELECT FOR UPDATE, not just queries with volatile functions): the re-read can produce different results, which confuses the cursor navigation logic completely. Another reason for disliking this approach is that some code paths will either fetch backwards or rewind-and-fetch-forwards depending on the distance to the target row; so that seemingly identical use-cases may or may not draw the "cursor can only scan forward" error. Hence, let's clean things up by disallowing rewind as well as fetch-backwards in a NO SCROLL cursor. Ordinarily we'd only make such a definitional change in HEAD, but there is a third reason to consider this change now. Commit |
4 years ago |
|
|
ef12f32c08 |
Use elog, not Assert, to report failure to provide an outer snapshot.
As of commit
|
4 years ago |
|
|
7c337b6b52 |
Centralize the logic for protective copying of utility statements.
In the "simple Query" code path, it's fine for parse analysis or execution of a utility statement to scribble on the statement's node tree, since that'll just be thrown away afterwards. However it's not fine if the node tree is in the plan cache, as then it'd be corrupted for subsequent executions. Up to now we've dealt with that by having individual utility-statement functions apply copyObject() if they were going to modify the tree. But that's prone to errors of omission. Bug #17053 from Charles Samborski shows that CREATE/ALTER DOMAIN didn't get this memo, and can crash if executed repeatedly from plan cache. In the back branches, we'll just apply a narrow band-aid for that, but in HEAD it seems prudent to have a more principled fix that will close off the possibility of other similar bugs in future. Hence, let's hoist the responsibility for doing copyObject up into ProcessUtility from its children, thus ensuring that it happens for all utility statement types. Also, modify ProcessUtility's API so that its callers can tell it whether a copy step is necessary. It turns out that in all cases, the immediate caller knows whether the node tree is transient, so this doesn't involve a huge amount of code thrashing. In this way, while we lose a little bit in the execute-from-cache code path due to sometimes copying node trees that wouldn't be mutated anyway, we gain something in the simple-Query code path by not copying throwaway node trees. Statements that are complex enough to be expensive to copy are almost certainly ones that would have to be copied anyway, so the loss in the cache code path shouldn't be much. (Note that this whole problem applies only to utility statements. Optimizable statements don't have the issue because we long ago made the executor treat Plan trees as read-only. Perhaps someday we will make utility statement execution act likewise, but I'm not holding my breath.) Discussion: https://postgr.es/m/931771.1623893989@sss.pgh.pa.us Discussion: https://postgr.es/m/17053-3ca3f501bbc212b4@postgresql.org |
5 years ago |
|
|
84f5c2908d |
Restore the portal-level snapshot after procedure COMMIT/ROLLBACK.
COMMIT/ROLLBACK necessarily destroys all snapshots within the session.
The original implementation of intra-procedure transactions just
cavalierly did that, ignoring the fact that this left us executing in
a rather different environment than normal. In particular, it turns
out that handling of toasted datums depends rather critically on there
being an outer ActiveSnapshot: otherwise, when SPI or the core
executor pop whatever snapshot they used and return, it's unsafe to
dereference any toasted datums that may appear in the query result.
It's possible to demonstrate "no known snapshots" and "missing chunk
number N for toast value" errors as a result of this oversight.
Historically this outer snapshot has been held by the Portal code,
and that seems like a good plan to preserve. So add infrastructure
to pquery.c to allow re-establishing the Portal-owned snapshot if it's
not there anymore, and add enough bookkeeping support that we can tell
whether it is or not.
We can't, however, just re-establish the Portal snapshot as part of
COMMIT/ROLLBACK. As in normal transaction start, acquiring the first
snapshot should wait until after SET and LOCK commands. Hence, teach
spi.c about doing this at the right time. (Note that this patch
doesn't fix the problem for any PLs that try to run intra-procedure
transactions without using SPI to execute SQL commands.)
This makes SPI's no_snapshots parameter rather a misnomer, so in HEAD,
rename that to allow_nonatomic.
replication/logical/worker.c also needs some fixes, because it wasn't
careful to hold a snapshot open around AFTER trigger execution.
That code doesn't use a Portal, which I suspect someday we're gonna
have to fix. But for now, just rearrange the order of operations.
This includes back-patching the recent addition of finish_estate()
to centralize the cleanup logic there.
This also back-patches commit
|
5 years ago |
|
|
9624321ec5 |
Avoid crash when rolling back within a prepared statement.
If a portal is used to run a prepared CALL or DO statement that
contains a ROLLBACK, PortalRunMulti fails because the portal's
statement list gets cleared by the rollback. (Since the grammar
doesn't allow CALL/DO in PREPARE, the only easy way to get to this is
via extended query protocol, which treats all inputs as prepared
statements.) It's difficult to avoid resetting the portal early
because of resource-management issues, so work around this by teaching
PortalRunMulti to be wary of portal->stmts having suddenly become NIL.
The crash has only been seen to occur in v13 and HEAD (as a
consequence of commit
|
5 years ago |
|
|
ca3b37487b |
Update copyright for 2021
Backpatch-through: 9.5 |
5 years ago |
|
|
2f48ede080 |
Avoid using a cursor in plpgsql's RETURN QUERY statement.
plpgsql has always executed the query given in a RETURN QUERY command by opening it as a cursor and then fetching a few rows at a time, which it turns around and dumps into the function's result tuplestore. The point of this was to keep from blowing out memory with an oversized SPITupleTable result (note that while a tuplestore can spill tuples to disk, SPITupleTable cannot). However, it's rather inefficient, both because of extra data copying and because of executor entry/exit overhead. In recent versions, a new performance problem has emerged: use of a cursor prevents use of a parallel plan for the executed query. We can improve matters by skipping use of a cursor and having the executor push result tuples directly into the function's result tuplestore. However, a moderate amount of new infrastructure is needed to make that idea work: * We can use the existing tstoreReceiver.c DestReceiver code to funnel executor output to the tuplestore, but it has to be extended to support plpgsql's requirement for possibly applying a tuple conversion map. * SPI needs to be extended to allow use of a caller-supplied DestReceiver instead of its usual receiver that puts tuples into a SPITupleTable. Two new API calls are needed to handle both the RETURN QUERY and RETURN QUERY EXECUTE cases. I also felt that I didn't want these new API calls to use the legacy method of specifying query parameter values with "char" null flags (the old ' '/'n' convention); rather they should accept ParamListInfo objects containing the parameter type and value info. This required a bit of additional new infrastructure since we didn't yet have any parse analysis callback that would interpret $N parameter symbols according to type data supplied in a ParamListInfo. There seems to be no harm in letting makeParamList install that callback by default, rather than leaving a new ParamListInfo's parserSetup hook as NULL. (Indeed, as of HEAD, I couldn't find anyplace that was using the parserSetup field at all; plpgsql was using parserSetupArg for its own purposes, but parserSetup seemed to be write-only.) We can actually get plpgsql out of the business of using legacy null flags altogether, and using ParamListInfo instead of its ad-hoc PreparedParamsData structure; but this requires inventing one more SPI API call that can replace SPI_cursor_open_with_args. That seems worth doing, though. SPI_execute_with_args and SPI_cursor_open_with_args are now unused anywhere in the core PG distribution. Perhaps someday we could deprecate/remove them. But cleaning up the crufty bits of the SPI API is a task for a different patch. Per bug #16040 from Jeremy Smith. This is unfortunately too invasive to consider back-patching. Patch by me; thanks to Hamid Akhtar for review. Discussion: https://postgr.es/m/16040-eaacad11fecfb198@postgresql.org |
6 years ago |
|
|
2f9661311b
|
Represent command completion tags as structs
The backend was using strings to represent command tags and doing string comparisons in multiple places, but that's slow and unhelpful. Create a new command list with a supporting structure to use instead; this is stored in a tag-list-file that can be tailored to specific purposes with a caller-definable C macro, similar to what we do for WAL resource managers. The first first such uses are a new CommandTag enum and a CommandTagBehavior struct. Replace numerous occurrences of char *completionTag with a QueryCompletion struct so that the code no longer stores information about completed queries in a cstring. Only at the last moment, in EndCommand(), does this get converted to a string. EventTriggerCacheItem no longer holds an array of palloc’d tag strings in sorted order, but rather just a Bitmapset over the CommandTags. Author: Mark Dilger, with unsolicited help from Álvaro Herrera Reviewed-by: John Naylor, Tom Lane Discussion: https://postgr.es/m/981A9DB4-3F0C-4DA5-88AD-CB9CFF4D6CAD@enterprisedb.com |
6 years ago |
|
|
7559d8ebfa |
Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4 |
6 years ago |
|
|
eb43f3d193 |
Fix inconsistencies and typos in the tree
This is numbered take 8, and addresses again a set of issues with code comments, variable names and unreferenced variables. Author: Alexander Lakhin Discussion: https://postgr.es/m/b137b5eb-9c95-9c2f-586e-38aba7d59788@gmail.com |
6 years ago |
|
|
1cff1b95ab |
Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link. We'd hacked that once before
(commit
|
7 years ago |
|
|
8255c7a5ee |
Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com |
7 years ago |
|
|
97c39498e5 |
Update copyright for 2019
Backpatch-through: certain files through 9.4 |
7 years ago |
|
|
578b229718 |
Remove WITH OIDS support, change oid catalog column visibility.
Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de |
7 years ago |
|
|
1a0586de36 |
Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de |
7 years ago |
|
|
08ea7a2291 |
Revert MERGE patch
This reverts commits |
8 years ago |
|
|
d204ef6377 |
MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table using a source table or query. MERGE provides a single SQL statement that can conditionally INSERT/UPDATE/DELETE rows a task that would other require multiple PL statements. e.g. MERGE INTO target AS t USING source AS s ON t.tid = s.sid WHEN MATCHED AND t.balance > s.delta THEN UPDATE SET balance = t.balance - s.delta WHEN MATCHED THEN DELETE WHEN NOT MATCHED AND s.delta > 0 THEN INSERT VALUES (s.sid, s.delta) WHEN NOT MATCHED THEN DO NOTHING; MERGE works with regular and partitioned tables, including column and row security enforcement, as well as support for row, statement and transition triggers. MERGE is optimized for OLTP and is parameterizable, though also useful for large scale ETL/ELT. MERGE is not intended to be used in preference to existing single SQL commands for INSERT, UPDATE or DELETE since there is some overhead. MERGE can be used statically from PL/pgSQL. MERGE does not yet support inheritance, write rules, RETURNING clauses, updatable views or foreign tables. MERGE follows SQL Standard per the most recent SQL:2016. Includes full tests and documentation, including full isolation tests to demonstrate the concurrent behavior. This version written from scratch in 2017 by Simon Riggs, using docs and tests originally written in 2009. Later work from Pavan Deolasee has been both complex and deep, leaving the lead author credit now in his hands. Extensive discussion of concurrency from Peter Geoghegan, with thanks for the time and effort contributed. Various issues reported via sqlsmith by Andreas Seltenreich Authors: Pavan Deolasee, Simon Riggs Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com |
8 years ago |
|
|
7cf8a5c302 |
Revert "Modified files for MERGE"
This reverts commit
|
8 years ago |
|
|
354f13855e |
Modified files for MERGE
|
8 years ago |
|
|
a77dd53f30 |
Remove PortalGetQueryDesc()
After having gotten rid of PortalGetHeapMemory(), there seems little reason to keep one Portal access macro around that offers no actual abstraction and isn't consistently used anyway. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> |
8 years ago |
|
|
0f7c49e855 |
Update portal-related memory context names and API
Rename PortalMemory to TopPortalContext, to avoid confusion with PortalContext and align naming with similar top-level memory contexts. Rename PortalData's "heap" field to portalContext. The "heap" naming seems quite antiquated and confusing. Also get rid of the PortalGetHeapMemory() macro and access the field directly, which we do for other portal fields, so this abstraction doesn't buy anything. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> |
8 years ago |
|
|
9d4649ca49 |
Update copyright for 2018
Backpatch-through: certain files through 9.3 |
8 years ago |
|
|
2eb4a831e5 |
Change TRUE/FALSE to true/false
The lower case spellings are C and C++ standard and are used in most parts of the PostgreSQL sources. The upper case spellings are only used in some files/modules. So standardize on the standard spellings. The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so those are left as is when using those APIs. In code comments, we use the lower-case spelling for the C concepts and keep the upper-case spelling for the SQL concepts. Reviewed-by: Michael Paquier <michael.paquier@gmail.com> |
8 years ago |
|
|
1356f78ea9 |
Reduce excessive dereferencing of function pointers
It is equivalent in ANSI C to write (*funcptr) () and funcptr(). These two styles have been applied inconsistently. After discussion, we'll use the more verbose style for plain function pointer variables, to make it clear that it's a variable, and the shorter style when the function pointer is in a struct (s.func() or s->func()), because then it's clear that it's not a plain function name, and otherwise the excessive punctuation makes some of those invocations hard to read. Discussion: https://www.postgresql.org/message-id/f52c16db-14ed-757d-4b48-7ef360b1631d@2ndquadrant.com |
8 years ago |
|
|
382ceffdf7 |
Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us |
9 years ago |
|
|
c7b8998ebb |
Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit
|
9 years ago |
|
|
8f0530f580 |
Improve castNode notation by introducing list-extraction-specific variants.
This extends the castNode() notation introduced by commit
|
9 years ago |
|
|
18ce3a4ab2 |
Add infrastructure to support EphemeralNamedRelation references.
A QueryEnvironment concept is added, which allows new types of objects to be passed into queries from parsing on through execution. At this point, the only thing implemented is a collection of EphemeralNamedRelation objects -- relations which can be referenced by name in queries, but do not exist in the catalogs. The only type of ENR implemented is NamedTuplestore, but provision is made to add more types fairly easily. An ENR can carry its own TupleDesc or reference a relation in the catalogs by relid. Although these features can be used without SPI, convenience functions are added to SPI so that ENRs can easily be used by code run through SPI. The initial use of all this is going to be transition tables in AFTER triggers, but that will be added to each PL as a separate commit. An incidental effect of this patch is to produce a more informative error message if an attempt is made to modify the contents of a CTE from a referencing DML statement. No tests previously covered that possibility, so one is added. Kevin Grittner and Thomas Munro Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro with valuable comments and suggestions from many others |
9 years ago |
|
|
691b8d5928 |
Allow for parallel execution whenever ExecutorRun() is done only once.
Previously, it was unsafe to execute a plan in parallel if ExecutorRun() might be called with a non-zero row count. However, it's quite easy to fix things up so that we can support that case, provided that it is known that we will never call ExecutorRun() a second time for the same QueryDesc. Add infrastructure to signal this, and cross-checks to make sure that a caller who claims this is true doesn't later reneg. While that pattern never happens with queries received directly from a client -- there's no way to know whether multiple Execute messages will be sent unless the first one requests all the rows -- it's pretty common for queries originating from procedural languages, which often limit the result to a single tuple or to a user-specified number of tuples. This commit doesn't actually enable parallelism in any additional cases, because currently none of the places that would be able to benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the first place, but it makes it much more palatable to pass CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it eliminates some cases where we'd end up having to run the parallel plan serially. Patch by me, based on some ideas from Rafia Sabih and corrected by Rafia Sabih based on feedback from Dilip Kumar and myself. Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com |
9 years ago |
|
|
c29aff959d |
Consistently declare timestamp variables as TimestampTz.
Twiddle the replication-related code so that its timestamp variables
are declared TimestampTz, rather than the uninformative "int64" that
was previously used for meant-to-be-always-integer timestamps.
This resolves the int64-vs-TimestampTz declaration inconsistencies
introduced by commit
|
9 years ago |
|
|
7afd56c3c6 |
Use castNode() in a bunch of statement-list-related code.
When I wrote commit
|
9 years ago |
|
|
ab1f0c8225 |
Change representation of statement lists, and add statement location info.
This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre |
9 years ago |
|
|
1d25779284 |
Update copyright via script for 2017
|
9 years ago |
|
|
a43f1939d5 |
Remove or reduce verbosity of some debug messages.
The debug messages that merely print StartTransactionCommand, CommitTransactionCommand, ProcessUtilty, or ProcessQuery with no additional details seem to be useless. Get rid of them. The transaction status messages produced by ShowTransactionState are occasionally useful, but they are extremely verbose, producing multiple lines of log output every time they fire, which can happens multiple times per transaction. So, reduce the level to DEBUG5; avoid emitting an extra line just to explain which debug point is at issue; and tighten up the rest of the message so it doesn't use quite so much horizontal space. With these changes, it's possible to run a somewhat busy system with a log level even as high as DEBUG4, whereas previously anything above DEBUG2 would flood the log with output that probably wasn't really all that useful. |
9 years ago |
|
|
9ee1cf04ab |
Fix TOAST access failure in RETURNING queries.
Discussion of commit |
10 years ago |
|
|
c6dbf1fe79 |
Stop the executor if no more tuples can be sent from worker to leader.
If a Gather node has read as many tuples as it needs (for example, due
to Limit) it may detach the queue connecting it to the worker before
reading all of the worker's tuples. Rather than let the worker
continue to generate and send all of the results, have it stop after
sending the next tuple.
More could be done here to stop the worker even quicker, but this is
about as well as we can hope to do for 9.6.
This is in response to a problem report from Andreas Seltenreich.
Commit
|
10 years ago |
|
|
23a27b039d |
Widen query numbers-of-tuples-processed counters to uint64.
This patch widens SPI_processed, EState's es_processed field, PortalData's portalPos field, FuncCallContext's call_cntr and max_calls fields, ExecutorRun's count argument, PortalRunFetch's result, and the max number of rows in a SPITupleTable to uint64, and deals with (I hope) all the ensuing fallout. Some of these values were declared uint32 before, and others "long". I also removed PortalData's posOverflow field, since that logic seems pretty useless given that portalPos is now always 64 bits. The user-visible results are that command tags for SELECT etc will correctly report tuple counts larger than 4G, as will plpgsql's GET GET DIAGNOSTICS ... ROW_COUNT command. Queries processing more tuples than that are still not exactly the norm, but they're becoming more common. Most values associated with FETCH/MOVE distances, such as PortalRun's count argument and the count argument of most SPI functions that have one, remain declared as "long". It's not clear whether it would be worth promoting those to int64; but it would definitely be a large dollop of additional API churn on top of this, and it would only help 32-bit platforms which seem relatively less likely to see any benefit. Andreas Scherbaum, reviewed by Christian Ullrich, additional hacking by me |
10 years ago |