mirror of https://github.com/postgres/postgres
Tag:
Branch:
Tree:
f3afbbdae9
REL2_0B
REL6_4
REL6_5_PATCHES
REL7_0_PATCHES
REL7_1_STABLE
REL7_2_STABLE
REL7_3_STABLE
REL7_4_STABLE
REL8_0_STABLE
REL8_1_STABLE
REL8_2_STABLE
REL8_3_STABLE
REL8_4_STABLE
REL8_5_ALPHA1_BRANCH
REL8_5_ALPHA2_BRANCH
REL8_5_ALPHA3_BRANCH
REL9_0_ALPHA4_BRANCH
REL9_0_ALPHA5_BRANCH
REL9_0_STABLE
REL9_1_STABLE
REL9_2_STABLE
REL9_3_STABLE
REL9_4_STABLE
REL9_5_STABLE
REL9_6_STABLE
REL_10_STABLE
REL_11_STABLE
REL_12_STABLE
REL_13_STABLE
REL_14_STABLE
REL_15_STABLE
REL_16_STABLE
REL_17_STABLE
REL_18_STABLE
Release_1_0_3
WIN32_DEV
ecpg_big_bison
master
PG95-1_01
PG95-1_08
PG95-1_09
REL2_0
REL6_1
REL6_1_1
REL6_2
REL6_2_1
REL6_3
REL6_3_2
REL6_4_2
REL6_5
REL6_5_1
REL6_5_2
REL6_5_3
REL7_0
REL7_0_2
REL7_0_3
REL7_1
REL7_1_1
REL7_1_2
REL7_1_3
REL7_1_BETA
REL7_1_BETA2
REL7_1_BETA3
REL7_2
REL7_2_1
REL7_2_2
REL7_2_3
REL7_2_4
REL7_2_5
REL7_2_6
REL7_2_7
REL7_2_8
REL7_2_BETA1
REL7_2_BETA2
REL7_2_BETA3
REL7_2_BETA4
REL7_2_BETA5
REL7_2_RC1
REL7_2_RC2
REL7_3
REL7_3_1
REL7_3_10
REL7_3_11
REL7_3_12
REL7_3_13
REL7_3_14
REL7_3_15
REL7_3_16
REL7_3_17
REL7_3_18
REL7_3_19
REL7_3_2
REL7_3_20
REL7_3_21
REL7_3_3
REL7_3_4
REL7_3_5
REL7_3_6
REL7_3_7
REL7_3_8
REL7_3_9
REL7_4
REL7_4_1
REL7_4_10
REL7_4_11
REL7_4_12
REL7_4_13
REL7_4_14
REL7_4_15
REL7_4_16
REL7_4_17
REL7_4_18
REL7_4_19
REL7_4_2
REL7_4_20
REL7_4_21
REL7_4_22
REL7_4_23
REL7_4_24
REL7_4_25
REL7_4_26
REL7_4_27
REL7_4_28
REL7_4_29
REL7_4_3
REL7_4_30
REL7_4_4
REL7_4_5
REL7_4_6
REL7_4_7
REL7_4_8
REL7_4_9
REL7_4_BETA1
REL7_4_BETA2
REL7_4_BETA3
REL7_4_BETA4
REL7_4_BETA5
REL7_4_RC1
REL7_4_RC2
REL8_0_0
REL8_0_0BETA1
REL8_0_0BETA2
REL8_0_0BETA3
REL8_0_0BETA4
REL8_0_0BETA5
REL8_0_0RC1
REL8_0_0RC2
REL8_0_0RC3
REL8_0_0RC4
REL8_0_0RC5
REL8_0_1
REL8_0_10
REL8_0_11
REL8_0_12
REL8_0_13
REL8_0_14
REL8_0_15
REL8_0_16
REL8_0_17
REL8_0_18
REL8_0_19
REL8_0_2
REL8_0_20
REL8_0_21
REL8_0_22
REL8_0_23
REL8_0_24
REL8_0_25
REL8_0_26
REL8_0_3
REL8_0_4
REL8_0_5
REL8_0_6
REL8_0_7
REL8_0_8
REL8_0_9
REL8_1_0
REL8_1_0BETA1
REL8_1_0BETA2
REL8_1_0BETA3
REL8_1_0BETA4
REL8_1_0RC1
REL8_1_1
REL8_1_10
REL8_1_11
REL8_1_12
REL8_1_13
REL8_1_14
REL8_1_15
REL8_1_16
REL8_1_17
REL8_1_18
REL8_1_19
REL8_1_2
REL8_1_20
REL8_1_21
REL8_1_22
REL8_1_23
REL8_1_3
REL8_1_4
REL8_1_5
REL8_1_6
REL8_1_7
REL8_1_8
REL8_1_9
REL8_2_0
REL8_2_1
REL8_2_10
REL8_2_11
REL8_2_12
REL8_2_13
REL8_2_14
REL8_2_15
REL8_2_16
REL8_2_17
REL8_2_18
REL8_2_19
REL8_2_2
REL8_2_20
REL8_2_21
REL8_2_22
REL8_2_23
REL8_2_3
REL8_2_4
REL8_2_5
REL8_2_6
REL8_2_7
REL8_2_8
REL8_2_9
REL8_2_BETA1
REL8_2_BETA2
REL8_2_BETA3
REL8_2_RC1
REL8_3_0
REL8_3_1
REL8_3_10
REL8_3_11
REL8_3_12
REL8_3_13
REL8_3_14
REL8_3_15
REL8_3_16
REL8_3_17
REL8_3_18
REL8_3_19
REL8_3_2
REL8_3_20
REL8_3_21
REL8_3_22
REL8_3_23
REL8_3_3
REL8_3_4
REL8_3_5
REL8_3_6
REL8_3_7
REL8_3_8
REL8_3_9
REL8_3_BETA1
REL8_3_BETA2
REL8_3_BETA3
REL8_3_BETA4
REL8_3_RC1
REL8_3_RC2
REL8_4_0
REL8_4_1
REL8_4_10
REL8_4_11
REL8_4_12
REL8_4_13
REL8_4_14
REL8_4_15
REL8_4_16
REL8_4_17
REL8_4_18
REL8_4_19
REL8_4_2
REL8_4_20
REL8_4_21
REL8_4_22
REL8_4_3
REL8_4_4
REL8_4_5
REL8_4_6
REL8_4_7
REL8_4_8
REL8_4_9
REL8_4_BETA1
REL8_4_BETA2
REL8_4_RC1
REL8_4_RC2
REL8_5_ALPHA1
REL8_5_ALPHA2
REL8_5_ALPHA3
REL9_0_0
REL9_0_1
REL9_0_10
REL9_0_11
REL9_0_12
REL9_0_13
REL9_0_14
REL9_0_15
REL9_0_16
REL9_0_17
REL9_0_18
REL9_0_19
REL9_0_2
REL9_0_20
REL9_0_21
REL9_0_22
REL9_0_23
REL9_0_3
REL9_0_4
REL9_0_5
REL9_0_6
REL9_0_7
REL9_0_8
REL9_0_9
REL9_0_ALPHA4
REL9_0_ALPHA5
REL9_0_BETA1
REL9_0_BETA2
REL9_0_BETA3
REL9_0_BETA4
REL9_0_RC1
REL9_1_0
REL9_1_1
REL9_1_10
REL9_1_11
REL9_1_12
REL9_1_13
REL9_1_14
REL9_1_15
REL9_1_16
REL9_1_17
REL9_1_18
REL9_1_19
REL9_1_2
REL9_1_20
REL9_1_21
REL9_1_22
REL9_1_23
REL9_1_24
REL9_1_3
REL9_1_4
REL9_1_5
REL9_1_6
REL9_1_7
REL9_1_8
REL9_1_9
REL9_1_ALPHA1
REL9_1_ALPHA2
REL9_1_ALPHA3
REL9_1_ALPHA4
REL9_1_ALPHA5
REL9_1_BETA1
REL9_1_BETA2
REL9_1_BETA3
REL9_1_RC1
REL9_2_0
REL9_2_1
REL9_2_10
REL9_2_11
REL9_2_12
REL9_2_13
REL9_2_14
REL9_2_15
REL9_2_16
REL9_2_17
REL9_2_18
REL9_2_19
REL9_2_2
REL9_2_20
REL9_2_21
REL9_2_22
REL9_2_23
REL9_2_24
REL9_2_3
REL9_2_4
REL9_2_5
REL9_2_6
REL9_2_7
REL9_2_8
REL9_2_9
REL9_2_BETA1
REL9_2_BETA2
REL9_2_BETA3
REL9_2_BETA4
REL9_2_RC1
REL9_3_0
REL9_3_1
REL9_3_10
REL9_3_11
REL9_3_12
REL9_3_13
REL9_3_14
REL9_3_15
REL9_3_16
REL9_3_17
REL9_3_18
REL9_3_19
REL9_3_2
REL9_3_20
REL9_3_21
REL9_3_22
REL9_3_23
REL9_3_24
REL9_3_25
REL9_3_3
REL9_3_4
REL9_3_5
REL9_3_6
REL9_3_7
REL9_3_8
REL9_3_9
REL9_3_BETA1
REL9_3_BETA2
REL9_3_RC1
REL9_4_0
REL9_4_1
REL9_4_10
REL9_4_11
REL9_4_12
REL9_4_13
REL9_4_14
REL9_4_15
REL9_4_16
REL9_4_17
REL9_4_18
REL9_4_19
REL9_4_2
REL9_4_20
REL9_4_21
REL9_4_22
REL9_4_23
REL9_4_24
REL9_4_25
REL9_4_26
REL9_4_3
REL9_4_4
REL9_4_5
REL9_4_6
REL9_4_7
REL9_4_8
REL9_4_9
REL9_4_BETA1
REL9_4_BETA2
REL9_4_BETA3
REL9_4_RC1
REL9_5_0
REL9_5_1
REL9_5_10
REL9_5_11
REL9_5_12
REL9_5_13
REL9_5_14
REL9_5_15
REL9_5_16
REL9_5_17
REL9_5_18
REL9_5_19
REL9_5_2
REL9_5_20
REL9_5_21
REL9_5_22
REL9_5_23
REL9_5_24
REL9_5_25
REL9_5_3
REL9_5_4
REL9_5_5
REL9_5_6
REL9_5_7
REL9_5_8
REL9_5_9
REL9_5_ALPHA1
REL9_5_ALPHA2
REL9_5_BETA1
REL9_5_BETA2
REL9_5_RC1
REL9_6_0
REL9_6_1
REL9_6_10
REL9_6_11
REL9_6_12
REL9_6_13
REL9_6_14
REL9_6_15
REL9_6_16
REL9_6_17
REL9_6_18
REL9_6_19
REL9_6_2
REL9_6_20
REL9_6_21
REL9_6_22
REL9_6_23
REL9_6_24
REL9_6_3
REL9_6_4
REL9_6_5
REL9_6_6
REL9_6_7
REL9_6_8
REL9_6_9
REL9_6_BETA1
REL9_6_BETA2
REL9_6_BETA3
REL9_6_BETA4
REL9_6_RC1
REL_10_0
REL_10_1
REL_10_10
REL_10_11
REL_10_12
REL_10_13
REL_10_14
REL_10_15
REL_10_16
REL_10_17
REL_10_18
REL_10_19
REL_10_2
REL_10_20
REL_10_21
REL_10_22
REL_10_23
REL_10_3
REL_10_4
REL_10_5
REL_10_6
REL_10_7
REL_10_8
REL_10_9
REL_10_BETA1
REL_10_BETA2
REL_10_BETA3
REL_10_BETA4
REL_10_RC1
REL_11_0
REL_11_1
REL_11_10
REL_11_11
REL_11_12
REL_11_13
REL_11_14
REL_11_15
REL_11_16
REL_11_17
REL_11_18
REL_11_19
REL_11_2
REL_11_20
REL_11_21
REL_11_22
REL_11_3
REL_11_4
REL_11_5
REL_11_6
REL_11_7
REL_11_8
REL_11_9
REL_11_BETA1
REL_11_BETA2
REL_11_BETA3
REL_11_BETA4
REL_11_RC1
REL_12_0
REL_12_1
REL_12_10
REL_12_11
REL_12_12
REL_12_13
REL_12_14
REL_12_15
REL_12_16
REL_12_17
REL_12_18
REL_12_19
REL_12_2
REL_12_20
REL_12_21
REL_12_22
REL_12_3
REL_12_4
REL_12_5
REL_12_6
REL_12_7
REL_12_8
REL_12_9
REL_12_BETA1
REL_12_BETA2
REL_12_BETA3
REL_12_BETA4
REL_12_RC1
REL_13_0
REL_13_1
REL_13_10
REL_13_11
REL_13_12
REL_13_13
REL_13_14
REL_13_15
REL_13_16
REL_13_17
REL_13_18
REL_13_19
REL_13_2
REL_13_20
REL_13_21
REL_13_22
REL_13_23
REL_13_3
REL_13_4
REL_13_5
REL_13_6
REL_13_7
REL_13_8
REL_13_9
REL_13_BETA1
REL_13_BETA2
REL_13_BETA3
REL_13_RC1
REL_14_0
REL_14_1
REL_14_10
REL_14_11
REL_14_12
REL_14_13
REL_14_14
REL_14_15
REL_14_16
REL_14_17
REL_14_18
REL_14_19
REL_14_2
REL_14_20
REL_14_3
REL_14_4
REL_14_5
REL_14_6
REL_14_7
REL_14_8
REL_14_9
REL_14_BETA1
REL_14_BETA2
REL_14_BETA3
REL_14_RC1
REL_15_0
REL_15_1
REL_15_10
REL_15_11
REL_15_12
REL_15_13
REL_15_14
REL_15_15
REL_15_2
REL_15_3
REL_15_4
REL_15_5
REL_15_6
REL_15_7
REL_15_8
REL_15_9
REL_15_BETA1
REL_15_BETA2
REL_15_BETA3
REL_15_BETA4
REL_15_RC1
REL_15_RC2
REL_16_0
REL_16_1
REL_16_10
REL_16_11
REL_16_2
REL_16_3
REL_16_4
REL_16_5
REL_16_6
REL_16_7
REL_16_8
REL_16_9
REL_16_BETA1
REL_16_BETA2
REL_16_BETA3
REL_16_RC1
REL_17_0
REL_17_1
REL_17_2
REL_17_3
REL_17_4
REL_17_5
REL_17_6
REL_17_7
REL_17_BETA1
REL_17_BETA2
REL_17_BETA3
REL_17_RC1
REL_18_0
REL_18_1
REL_18_BETA1
REL_18_BETA2
REL_18_BETA3
REL_18_RC1
Release_1_0_2
Release_2_0
Release_2_0_0
release-6-3
${ noResults }
3614 Commits (f3afbbdae9b6ca04a6d2b224a8dfd5959d8a17ea)
| Author | SHA1 | Message | Date |
|---|---|---|---|
|
|
2a96909a4a |
tableam: Support for an index build's initial table scan(s).
To support building indexes over tables of different AMs, the scans to do so need to be routed through the table AM. While moving a fair amount of code, nearly all the changes are just moving code to below a callback. Currently the range based interface wouldn't make much sense for non block based table AMs. But that seems aceptable for now. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
1983af8e89 |
Switch some palloc/memset calls to palloc0
Some code paths have been doing some allocations followed by an immediate memset() to initialize the allocated area with zeros, this is a bit overkill as there are already interfaces to do both things in one call. Author: Daniel Gustafsson Reviewed-by: Michael Paquier Discussion: https://postgr.es/m/vN0OodBPkKs7g2Z1uyk3CUEmhdtspHgYCImhlmSxv1Xn6nY1ZnaaGHL8EWUIQ-NEv36tyc4G5-uA3UXUF2l4sFXtK_EQgLN1hcgunlFVKhA=@yesql.se |
7 years ago |
|
|
e8d5dd6be7 |
Get rid of duplicate child RTE for a partitioned table.
We've been creating duplicate RTEs for partitioned tables just because we do so for regular inheritance parent tables. But unlike regular-inheritance parents which are themselves regular tables and thus need to be scanned, partitioned tables don't need the extra RTE. This makes the conditions for building a child RTE the same as those for building an AppendRelInfo, allowing minor simplification in expand_single_inheritance_child. Since the planner's actual processing is driven off the AppendRelInfo list, nothing much changes beyond that, we just have one fewer useless RTE entry. Amit Langote, reviewed and hacked a bit by me Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp |
7 years ago |
|
|
8edd0e7946 |
Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't doing anything useful, and can be elided. It does have a purpose during planning though, which is to serve as a buffer between parent and child Var numbering. Therefore we keep it all the way through to setrefs.c, and get rid of it only after fixing references in the plan level(s) above it. This works largely the same as setrefs.c's ancient hack to get rid of no-op SubqueryScan nodes, and can even share some code with that. Note the change to make setrefs.c use apply_tlist_labeling rather than ad-hoc code. This has the effect of propagating the child's resjunk and ressortgroupref labels, which formerly weren't propagated when removing a SubqueryScan. Doing that is demonstrably necessary for the [Merge]Append cases, and seems harmless for SubqueryScan, if only because trivial_subqueryscan is afraid to collapse cases where the resjunk marking differs. (I suspect that restriction could now be removed, though it's unclear that it'd make any new matches possible, since the outer query can't have references to a child resjunk column.) David Rowley, reviewed by Alvaro Herrera and Tomas Vondra Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com |
7 years ago |
|
|
572e3e6634 |
Initialize structure at declaration
Avoids extra memset call and cast. Discussion: https://www.postgresql.org/message-id/flat/7a5cbea7-b8df-e910-0f10-04014bcad701%402ndquadrant.com |
7 years ago |
|
|
bd9396a0b2 |
Avoid double-free in vacuumlo error path.
The code would do "PQclear(res)" twice if lo_unlink failed, evidently
due to careless thinking about how far out a "break" would break.
Remove the extra PQclear and adjust the loop logic so that we'll fall
out of both levels of loop after an error, as was clearly the intent.
Spotted by Coverity. I have no idea why it took this long to notice,
since the bug has been there since commit
|
7 years ago |
|
|
5db6df0c01 |
tableam: Add tuple_{insert, delete, update, lock} and use.
This adds new, required, table AM callbacks for insert/delete/update
and lock_tuple. To be able to reasonably use those, the EvalPlanQual
mechanism had to be adapted, moving more logic into the AM.
Previously both delete/update/lock call-sites and the EPQ mechanism had
to have awareness of the specific tuple format to be able to fetch the
latest version of a tuple. Obviously that needs to be abstracted
away. To do so, move the logic that find the latest row version into
the AM. lock_tuple has a new flag argument,
TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last
version, rather than the current one. It'd have been possible to do
so via a separate callback as well, but finding the last version
usually also necessitates locking the newest version, making it
sensible to combine the two. This replaces the previous use of
EvalPlanQualFetch(). Additionally HeapTupleUpdated, which previously
signaled either a concurrent update or delete, is now split into two,
to avoid callers needing AM specific knowledge to differentiate.
The move of finding the latest row version into tuple_lock means that
encountering a row concurrently moved into another partition will now
raise an error about "tuple to be locked" rather than "tuple to be
updated/deleted" - which is accurate, as that always happens when
locking rows. While possible slightly less helpful for users, it seems
like an acceptable trade-off.
As part of this commit HTSU_Result has been renamed to TM_Result, and
its members been expanded to differentiated between updating and
deleting. HeapUpdateFailureData has been renamed to TM_FailureData.
The interface to speculative insertion is changed so nodeModifyTable.c
does not have to set the speculative token itself anymore. Instead
there's a version of tuple_insert, tuple_insert_speculative, that
performs the speculative insertion (without requiring a flag to signal
that fact), and the speculative insertion is either made permanent
with table_complete_speculative(succeeded = true) or aborted with
succeeded = false).
Note that multi_insert is not yet routed through tableam, nor is
COPY. Changing multi_insert requires changes to copy.c that are large
enough to better be done separately.
Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED
VIEW are also only going to be adjusted in a later commit.
Author: Andres Freund and Haribabu Kommi
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |
|
|
5e1963fb76 |
Collations with nondeterministic comparison
This adds a flag "deterministic" to collations. If that is false, such a collation disables various optimizations that assume that strings are equal only if they are byte-wise equal. That then allows use cases such as case-insensitive or accent-insensitive comparisons or handling of strings with different Unicode normal forms. This functionality is only supported with the ICU provider. At least glibc doesn't appear to have any locales that work in a nondeterministic way, so it's not worth supporting this for the libc provider. The term "deterministic comparison" in this context is from Unicode Technical Standard #10 (https://unicode.org/reports/tr10/#Deterministic_Comparison). This patch makes changes in three areas: - CREATE COLLATION DDL changes and system catalog changes to support this new flag. - Many executor nodes and auxiliary code are extended to track collations. Previously, this code would just throw away collation information, because the eventually-called user-defined functions didn't use it since they only cared about equality, which didn't need collation information. - String data type functions that do equality comparisons and hashing are changed to take the (non-)deterministic flag into account. For comparison, this just means skipping various shortcuts and tie breakers that use byte-wise comparison. For hashing, we first need to convert the input string to a canonical "sort key" using the ICU analogue of strxfrm(). Reviewed-by: Daniel Verite <daniel@manitou-mail.org> Reviewed-by: Peter Geoghegan <pg@bowt.ie> Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com |
7 years ago |
|
|
c1afd175b5 |
Allow amcheck to re-find tuples using new search.
Teach contrib/amcheck's bt_index_parent_check() function to take advantage of the uniqueness property of heapkeyspace indexes in support of a new verification option: non-pivot tuples (non-highkey tuples on the leaf level) can optionally be re-found using a new search for each, that starts from the root page. If a tuple cannot be re-found, report that the index is corrupt. The new "rootdescend" verification option is exhaustive, and can therefore make a call to bt_index_parent_check() take a lot longer. Re-finding tuples during verification is mostly intended as an option for backend developers, since the corruption scenarios that it alone is uniquely capable of detecting seem fairly far-fetched. For example, "rootdescend" verification is much more likely to detect corruption of the least significant byte of a key from a pivot tuple in the root page of a B-Tree that already has at least three levels. Typically, only a few tuples on a cousin leaf page are at risk of "getting overlooked" by index scans in this scenario. The corrupt key in the root page is only slightly corrupt: corrupt enough to give wrong answers to some queries, and yet not corrupt enough to allow the problem to be detected without verifying agreement between the leaf page and the root page, skipping at least one internal page level. The existing bt_index_parent_check() checks never cross more than a single level. Author: Peter Geoghegan Reviewed-By: Heikki Linnakangas Discussion: https://postgr.es/m/CAH2-Wz=yTWnVu+HeHGKb2AGiADL9eprn-cKYAto4MkKOuiGtRQ@mail.gmail.com |
7 years ago |
|
|
dd299df818 |
Make heap TID a tiebreaker nbtree index column.
Make nbtree treat all index tuples as having a heap TID attribute. Index searches can distinguish duplicates by heap TID, since heap TID is always guaranteed to be unique. This general approach has numerous benefits for performance, and is prerequisite to teaching VACUUM to perform "retail index tuple deletion". Naively adding a new attribute to every pivot tuple has unacceptable overhead (it bloats internal pages), so suffix truncation of pivot tuples is added. This will usually truncate away the "extra" heap TID attribute from pivot tuples during a leaf page split, and may also truncate away additional user attributes. This can increase fan-out, especially in a multi-column index. Truncation can only occur at the attribute granularity, which isn't particularly effective, but works well enough for now. A future patch may add support for truncating "within" text attributes by generating truncated key values using new opclass infrastructure. Only new indexes (BTREE_VERSION 4 indexes) will have insertions that treat heap TID as a tiebreaker attribute, or will have pivot tuples undergo suffix truncation during a leaf page split (on-disk compatibility with versions 2 and 3 is preserved). Upgrades to version 4 cannot be performed on-the-fly, unlike upgrades from version 2 to version 3. contrib/amcheck continues to work with version 2 and 3 indexes, while also enforcing stricter invariants when verifying version 4 indexes. These stricter invariants are the same invariants described by "3.1.12 Sequencing" from the Lehman and Yao paper. A later patch will enhance the logic used by nbtree to pick a split point. This patch is likely to negatively impact performance without smarter choices around the precise point to split leaf pages at. Making these two mostly-distinct sets of enhancements into distinct commits seems like it might clarify their design, even though neither commit is particularly useful on its own. The maximum allowed size of new tuples is reduced by an amount equal to the space required to store an extra MAXALIGN()'d TID in a new high key during leaf page splits. The user-facing definition of the "1/3 of a page" restriction is already imprecise, and so does not need to be revised. However, there should be a compatibility note in the v12 release notes. Author: Peter Geoghegan Reviewed-By: Heikki Linnakangas, Alexander Korotkov Discussion: https://postgr.es/m/CAH2-WzkVb0Kom=R+88fDFb=JSxZMFvbHVC6Mn9LJ2n=X=kS-Uw@mail.gmail.com |
7 years ago |
|
|
e5adcb789d |
Refactor nbtree insertion scankeys.
Use dedicated struct to represent nbtree insertion scan keys. Having a dedicated struct makes the difference between search type scankeys and insertion scankeys a lot clearer, and simplifies the signature of several related functions. This is based on a suggestion by Andrey Lepikhov. Streamline how unique index insertions cache binary search progress. Cache the state of in-progress binary searches within _bt_check_unique() for later instead of having callers avoid repeating the binary search in an ad-hoc manner. This makes it easy to add a new optimization: _bt_check_unique() now falls out of its loop immediately in the common case where it's already clear that there couldn't possibly be a duplicate. The new _bt_check_unique() scheme makes it a lot easier to manage cached binary search effort afterwards, from within _bt_findinsertloc(). This is needed for the upcoming patch to make nbtree tuples unique by treating heap TID as a final tiebreaker column. Unique key binary searches need to restore lower and upper bounds. They cannot simply continue to use the >= lower bound as the offset to insert at, because the heap TID tiebreaker column must be used in comparisons for the restored binary search (unlike the original _bt_check_unique() binary search, where scankey's heap TID column must be omitted). Author: Peter Geoghegan, Heikki Linnakangas Reviewed-By: Heikki Linnakangas, Andrey Lepikhov Discussion: https://postgr.es/m/CAH2-WzmE6AhUdk9NdWBf4K3HjWXZBX3+umC7mH7+WDrKcRtsOw@mail.gmail.com |
7 years ago |
|
|
7571ce6f11 |
Remove leftover reference to oid column.
I (Andres) missed this in
|
7 years ago |
|
|
1459e84cb2 |
Don't auto-restart per-database autoprewarm workers.
We should try to prewarm each database only once. Otherwise, if prewarming fails for some reason, it will just keep retrying in an infnite loop. This can happen if, for example, the database has been dropped. The existing code was intended to implement the try-once behavior, but failed to do so because it neglected to set worker.bgw_restart_time to BGW_NEVER_RESTART. Mithun Cy, per a report from Hans Buschmann Discussion: http://postgr.es/m/CA+hUKGKpQJCWcgyy3QTC9vdn6uKAR_8r__A-MMm2GYfj45caag@mail.gmail.com |
7 years ago |
|
|
1226d932b4 |
Fix volatile vs. pointer confusion
Variables used after a longjmp() need to be declared volatile. In
case of a pointer, it's the pointer itself that needs to be declared
volatile, not the pointed-to value. So we need
PyObject *volatile items;
instead of
volatile PyObject *items; /* wrong */
Discussion: https://www.postgresql.org/message-id/flat/f747368d-9e1a-c46a-ac76-3c27da32e8e4%402ndquadrant.com
|
7 years ago |
|
|
c2fe139c20 |
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |
|
|
af38498d4c |
Move hash_any prototype from access/hash.h to utils/hashutils.h
... as well as its implementation from backend/access/hash/hashfunc.c to backend/utils/hash/hashfn.c. access/hash is the place for the hash index AM, not really appropriate for generic facilities, which is what hash_any is; having things the old way meant that anything using hash_any had to include the AM's include file, pointlessly polluting its namespace with unrelated, unnecessary cruft. Also move the HTEqual strategy number to access/stratnum.h from access/hash.h. To avoid breaking third-party extension code, add an #include "utils/hashutils.h" to access/hash.h. (An easily removed line by committers who enjoy their asbestos suits to protect them from angry extension authors.) Discussion: https://postgr.es/m/201901251935.ser5e4h6djt2@alvherre.pgsql |
7 years ago |
|
|
82a5649fb9 |
Tighten use of OpenTransientFile and CloseTransientFile
This fixes two sets of issues related to the use of transient files in the backend: 1) OpenTransientFile() has been used in some code paths with read-write flags while read-only is sufficient, so switch those calls to be read-only where necessary. These have been reported by Joe Conway. 2) When opening transient files, it is up to the caller to close the file descriptors opened. In error code paths, CloseTransientFile() gets called to clean up things before issuing an error. However in normal exit paths, a lot of callers of CloseTransientFile() never actually reported errors, which could leave a file descriptor open without knowing about it. This is an issue I complained about a couple of times, but never had the courage to write and submit a patch, so here we go. Note that one frontend code path is impacted by this commit so as an error is issued when fetching control file data, making backend and frontend to be treated consistently. Reported-by: Joe Conway, Michael Paquier Author: Michael Paquier Reviewed-by: Álvaro Herrera, Georgios Kokolatos, Joe Conway Discussion: https://postgr.es/m/20190301023338.GD1348@paquier.xyz Discussion: https://postgr.es/m/c49b69ec-e2f7-ff33-4f17-0eaa4f2cef27@joeconway.com |
7 years ago |
|
|
da35d14806 |
Remove unused macro
It has never been used as long as hstore has been in the tree. |
7 years ago |
|
|
ff11e7f4b9 |
Use slots in trigger infrastructure, except for the actual invocation.
In preparation for abstracting table storage, convert trigger.c to track tuples in slots. Which also happens to make code calling triggers simpler. As the calling interface for triggers themselves is not changed in this patch, HeapTuples still are extracted from the slot at that time. But that's handled solely inside trigger.c, not visible to callers. It's quite likely that we'll want to revise the external trigger interface, but that's a separate large project. As part of this work the slots used for old/new/return tuples are moved from EState into ResultRelInfo, as different updated tables might need different slots. The slots are now also now created on-demand, which is good both from an efficiency POV, but also makes the modifying code simpler. Author: Andres Freund, Amit Khandekar and Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
29d108cdec |
Doc: Update the documentation for FSM behavior for small tables.
In commit
|
7 years ago |
|
|
faee6fae6d |
Suppress another case of MSVC warning 4146.
|
7 years ago |
|
|
04a87ae262 |
In imath.h, replace stdint.h usage with c.h equivalents.
As things stood, buildfarm member dory failed. MSVC versions lacking stdint.h are unusable for building PostgreSQL, but pg_config.h.win32 doesn't know that. Even so, we support other systems lacking stdint.h, including buildfarm member gaur. Per a suggestion from Tom Lane. Discussion: https://postgr.es/m/9598.1550353336@sss.pgh.pa.us |
7 years ago |
|
|
48e24ba6b7 |
Import changes from IMath versions (1.3, 1.29].
Upstream fixed bugs over the years, but none are confirmed to have
affected pgcrypto. We're better off naively tracking upstream than
reactively maintaining a twelve-year-old snapshot of upstream. Add a
header comment describing the synchronization procedure. Discard use of
INVERT_COMPARE_RESULT(); the domain of the comparisons in question is
{-1,0,1}, controlled entirely by code in imath.c.
Andrew Gierth reviewed the Makefile change. Tom Lane reviewed the
synchronization procedure description.
Discussion: https://postgr.es/m/20190203035704.GA6226@rfd.leadboat.com
|
7 years ago |
|
|
608b167f9f |
Allow user control of CTE materialization, and change the default behavior.
Historically we've always materialized the full output of a CTE query, treating WITH as an optimization fence (so that, for example, restrictions from the outer query cannot be pushed into it). This is appropriate when the CTE query is INSERT/UPDATE/DELETE, or is recursive; but when the CTE query is non-recursive and side-effect-free, there's no hazard of changing the query results by pushing restrictions down. Another argument for materialization is that it can avoid duplicate computation of an expensive WITH query --- but that only applies if the WITH query is called more than once in the outer query. Even then it could still be a net loss, if each call has restrictions that would allow just a small part of the WITH query to be computed. Hence, let's change the behavior for WITH queries that are non-recursive and side-effect-free. By default, we will inline them into the outer query (removing the optimization fence) if they are called just once. If they are called more than once, we will keep the old behavior by default, but the user can override this and force inlining by specifying NOT MATERIALIZED. Lastly, the user can force the old behavior by specifying MATERIALIZED; this would mainly be useful when the query had deliberately been employing WITH as an optimization fence to prevent a poor choice of plan. Andreas Karlsson, Andrew Gierth, David Fetter Discussion: https://postgr.es/m/87sh48ffhb.fsf@news-spur.riddles.org.uk |
7 years ago |
|
|
02a6a54ecd |
Make use of compiler builtins and/or assembly for CLZ, CTZ, POPCNT.
Test for the compiler builtins __builtin_clz, __builtin_ctz, and __builtin_popcount, and make use of these in preference to handwritten C code if they're available. Create src/port infrastructure for "leftmost one", "rightmost one", and "popcount" so as to centralize these decisions. On x86_64, __builtin_popcount generally won't make use of the POPCNT opcode because that's not universally supported yet. Provide code that checks CPUID and then calls POPCNT via asm() if available. This requires indirecting through a function pointer, which is an annoying amount of overhead for a one-instruction operation, but it's probably not worth working harder than this for our current use-cases. I'm not sure we've found all the existing places that could profit from this new infrastructure; but we at least touched all the ones that used copied-and-pasted versions of the bitmapset.c code, and got rid of multiple copies of the associated constant arrays. While at it, replace c-compiler.m4's one-per-builtin-function macros with a single one that can handle all the cases we need to worry about so far. Also, because I'm paranoid, make those checks into AC_LINK checks rather than just AC_COMPILE; the former coding failed to verify that libgcc has support for the builtin, in cases where it's not inline code. David Rowley, Thomas Munro, Alvaro Herrera, Tom Lane Discussion: https://postgr.es/m/CAKJS1f9WTAGG1tPeJnD18hiQW5gAk59fQ6WK-vfdAKEHyRg2RA@mail.gmail.com |
7 years ago |
|
|
e89f14e2bb |
Refactor index cost estimation functions in view of IndexClause changes.
Get rid of deconstruct_indexquals() in favor of just iterating over the IndexClause list directly. The extra services that that function used to provide, such as hiding clause commutation and associating the right index column with each clause, are no longer useful given the new data structure. I'd originally thought that it'd provide a useful amount of abstraction by freeing callers from paying attention to the exact clause type of each indexqual, but that hope proves to have been vain, because few callers can ignore the semantic differences between different clause types. Indeed, removing it results in a net code savings, and probably some cycles shaved by not having to build an extra list-of-structs data structure. Also, export a few formerly-static support functions, with the goal of allowing extension AMs to write functionality equivalent to genericcostestimate() without pointless code duplication. Discussion: https://postgr.es/m/24586.1550106354@sss.pgh.pa.us |
7 years ago |
|
|
4b3b07fd5d |
Resolve one unconstify use
A small API change makes it unnecessary. Reported-by: Mark Dilger <hornschnorter@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/53a28052-f9f3-1808-fed9-460fd43035ab%402ndquadrant.com |
7 years ago |
|
|
02ddd49932 |
Change floating-point output format for improved performance.
Previously, floating-point output was done by rounding to a specific decimal precision; by default, to 6 or 15 decimal digits (losing information) or as requested using extra_float_digits. Drivers that wanted exact float values, and applications like pg_dump that must preserve values exactly, set extra_float_digits=3 (or sometimes 2 for historical reasons, though this isn't enough for float4). Unfortunately, decimal rounded output is slow enough to become a noticable bottleneck when dealing with large result sets or COPY of large tables when many floating-point values are involved. Floating-point output can be done much faster when the output is not rounded to a specific decimal length, but rather is chosen as the shortest decimal representation that is closer to the original float value than to any other value representable in the same precision. The recently published Ryu algorithm by Ulf Adams is both relatively simple and remarkably fast. Accordingly, change float4out/float8out to output shortest decimal representations if extra_float_digits is greater than 0, and make that the new default. Applications that need rounded output can set extra_float_digits back to 0 or below, and take the resulting performance hit. We make one concession to portability for systems with buggy floating-point input: we do not output decimal values that fall exactly halfway between adjacent representable binary values (which would rely on the reader doing round-to-nearest-even correctly). This is known to be a problem at least for VS2013 on Windows. Our version of the Ryu code originates from https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the following (significant) modifications: - Output format is changed to use fixed-point notation for small exponents, as printf would, and also to use lowercase 'e', a minimum of 2 exponent digits, and a mandatory sign on the exponent, to keep the formatting as close as possible to previous output. - The output of exact midpoint values is disabled as noted above. - The integer fast-path code is changed somewhat (since we have fixed-point output and the upstream did not). - Our project style has been largely applied to the code with the exception of C99 declaration-after-statement, which has been retained as an exception to our present policy. - Most of upstream's debugging and conditionals are removed, and we use our own configure tests to determine things like uint128 availability. Changing the float output format obviously affects a number of regression tests. This patch uses an explicit setting of extra_float_digits=0 for test output that is not expected to be exactly reproducible (e.g. due to numerical instability or differing algorithms for transcendental functions). Conversions from floats to numeric are unchanged by this patch. These may appear in index expressions and it is not yet clear whether any change should be made, so that can be left for another day. This patch assumes that the only supported floating point format is now IEEE format, and the documentation is updated to reflect that. Code by me, adapting the work of Ulf Adams and other contributors. References: https://dl.acm.org/citation.cfm?id=3192369 Reviewed-by: Tom Lane, Andres Freund, Donald Dong Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk |
7 years ago |
|
|
37d9916020 |
More unconstify use
Replace casts whose only purpose is to cast away const with the unconstify() macro. Discussion: https://www.postgresql.org/message-id/flat/53a28052-f9f3-1808-fed9-460fd43035ab%402ndquadrant.com |
7 years ago |
|
|
cf40dc65b6 |
Remove useless casts
Some of these were uselessly casting away "const", some were just nearby, but they where all unnecessary anyway. Discussion: https://www.postgresql.org/message-id/flat/53a28052-f9f3-1808-fed9-460fd43035ab%402ndquadrant.com |
7 years ago |
|
|
8c67d29fd5 |
Relax overly strict assertion
Ever since its birth, ReorderBufferBuildTupleCidHash() has contained an assertion that a catalog tuple cannot change Cmax after acquiring one. But that's wrong: if a subtransaction executes DDL that affects that catalog tuple, and later aborts and another DDL affects the same tuple, it will change Cmax. Relax the assertion to merely verify that the Cmax remains valid and monotonically increasing, instead. Add a test that tickles the relevant code. Diagnosed by, and initial patch submitted by: Arseny Sher Co-authored-by: Arseny Sher Discussion: https://postgr.es/m/874l9p8hyw.fsf@ars-thinkpad |
7 years ago |
|
|
a391ff3c3d |
Build out the planner support function infrastructure.
Add support function requests for estimating the selectivity, cost, and number of result rows (if a SRF) of the target function. The lack of a way to estimate selectivity of a boolean-returning function in WHERE has been a recognized deficiency of the planner since Berkeley days. This commit finally fixes it. In addition, non-constant estimates of cost and number of output rows are now possible. We still fall back to looking at procost and prorows if the support function doesn't service the request, of course. To make concrete use of the possibility of estimating output rowcount for SRFs, this commit adds support functions for array_unnest(anyarray) and the integer variants of generate_series; the lack of plausible rowcount estimates for those, even when it's obvious to a human, has been a repeated subject of complaints. Obviously, much more could now be done in this line, but I'm mostly just trying to get the infrastructure in place. Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us |
7 years ago |
|
|
34ea1ab7fd |
Split create_foreignscan_path() into three functions.
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels. This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels. It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.
In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs. I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects. In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.
In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids. Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit
|
7 years ago |
|
|
eba775345d |
Avoid amcheck inline compression false positives.
The previous tacit assumption that index_form_tuple() hides differences in the TOAST state of its input datums was wrong. Normalize input varlena datums by decompressing compressed values, and forming a new index tuple for fingerprinting using uncompressed inputs. The final normalized representation may actually be compressed once again within index_form_tuple(), though that shouldn't matter. When the original tuple is found to have no datums that are compressed inline, fingerprint the original tuple directly. Normalization avoids false positive reports of corruption in certain cases. For example, the executor can apply toasting with some inline compression to an entire heap tuple because its input has a single external TOAST pointer. Varlena datums for other attributes that are not particularly good candidates for inline compression can be compressed in the heap tuple in passing, without the representation of the same values in index tuples ever receiving concomitant inline compression. Add a test case to recreate the issue in a simpler though less realistic way: by exploiting differences in pg_attribute.attstorage between heap and index relations. This bug was discovered by me during testing of an upcoming set of nbtree enhancements. It was also independently reported by Andreas Kunert, as bug #15597. His test case was rather more realistic than the one I ended up using. Bug: #15597 Discussion: https://postgr.es/m/CAH2-WznrVd9ie+TTJ45nDT+v2nUt6YJwQrT9SebCdQKtAvfPZw@mail.gmail.com Discussion: https://postgr.es/m/15597-294e5d3e7f01c407@postgresql.org Backpatch: 11-, where heapallindexed verification was introduced. |
7 years ago |
|
|
08ecdfe7e5 |
Make FSM test portable.
In
|
7 years ago |
|
|
b0eaa4c51b |
Avoid creation of the free space map for small heap relations, take 2.
Previously, all heaps had FSMs. For very small tables, this means that the FSM took up more space than the heap did. This is wasteful, so now we refrain from creating the FSM for heaps with 4 pages or fewer. If the last known target block has insufficient space, we still try to insert into some other page before giving up and extending the relation, since doing otherwise leads to table bloat. Testing showed that trying every page penalized performance slightly, so we compromise and try every other page. This way, we visit at most two pages. Any pages with wasted free space become visible at next relation extension, so we still control table bloat. As a bonus, directly attempting one or two pages can even be faster than consulting the FSM would have been. Once the FSM is created for a heap we don't remove it even if somebody deletes all the rows from the corresponding relation. We don't think it is a useful optimization as it is quite likely that relation will again grow to the same size. Author: John Naylor, Amit Kapila Reviewed-by: Amit Kapila Tested-by: Mithun C Y Discussion: https://www.postgresql.org/message-id/CAJVSVGWvB13PzpbLEecFuGFc5V2fsO736BsdTakPiPAcdMM5tQ@mail.gmail.com |
7 years ago |
|
|
558d77f20e |
Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to introduce a more generic subscription mechanism, which allows subscripting not only arrays but also other object types such as JSONB. That functionality is introduced in a largish invasive patch, out of which this internal renaming patch was extracted. Author: Dmitry Dolgov Reviewed-by: Tom Lane, Arthur Zakirov Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com |
7 years ago |
|
|
456e3718e7 |
Add combining characters to unaccent.rules.
Strip certain classes of combining characters, so that accents encoded this way are removed. Author: Hugh Ranalli Discussion: https://postgr.es/m/15548-cef1b3f8de190d4f%40postgresql.org |
7 years ago |
|
|
fa2cf164aa |
Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it was for. Now that there's also access/relation.h, we have a potential confusion hazard as well, so let's rename it to something more apropos. Per discussion, "pathnodes.h" is reasonable, since a good fraction of the file is Path node definitions. While at it, tweak a couple of other headers that were gratuitously importing relation.h into modules that don't need it. Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us |
7 years ago |
|
|
f09346a9c6 |
Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us |
7 years ago |
|
|
449d0a8550 |
postgres_fdw: Fix test for cached costs in estimate_path_cost_size().
estimate_path_cost_size() failed to re-use cached costs when the cached startup/total cost was 0, so it calculated the costs redundantly. This is an oversight in commit aa09cd242f; but apply the patch to HEAD only because there are no reports of actual trouble from that. Author: Etsuro Fujita Discussion: https://postgr.es/m/5C4AF3F3.4060409%40lab.ntt.co.jp |
7 years ago |
|
|
4be058fe9e |
In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us |
7 years ago |
|
|
a23676503b |
Revert "Avoid creation of the free space map for small heap relations."
This reverts commit
|
7 years ago |
|
|
ac88d2962a |
Avoid creation of the free space map for small heap relations.
Previously, all heaps had FSMs. For very small tables, this means that the FSM took up more space than the heap did. This is wasteful, so now we refrain from creating the FSM for heaps with 4 pages or fewer. If the last known target block has insufficient space, we still try to insert into some other page before giving up and extending the relation, since doing otherwise leads to table bloat. Testing showed that trying every page penalized performance slightly, so we compromise and try every other page. This way, we visit at most two pages. Any pages with wasted free space become visible at next relation extension, so we still control table bloat. As a bonus, directly attempting one or two pages can even be faster than consulting the FSM would have been. Once the FSM is created for a heap we don't remove it even if somebody deletes all the rows from the corresponding relation. We don't think it is a useful optimization as it is quite likely that relation will again grow to the same size. Author: John Naylor with design inputs and some code contribution by Amit Kapila Reviewed-by: Amit Kapila Tested-by: Mithun C Y Discussion: https://www.postgresql.org/message-id/CAJVSVGWvB13PzpbLEecFuGFc5V2fsO736BsdTakPiPAcdMM5tQ@mail.gmail.com |
7 years ago |
|
|
a9c35cf85c |
Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for V1 function calls are stored in, always had space for FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two arrays. For nearly every function call 100 arguments is far more than needed, therefore wasting memory. Arg and argnull being two separate arrays also guarantees that to access a single argument, two cachelines have to be touched. Change the layout so there's a single variable-length array with pairs of value / isnull. That drastically reduces memory consumption for most function calls (on x86-64 a two argument function now uses 64bytes, previously 936 bytes), and makes it very likely that argument value and its nullness are on the same cacheline. Arguments are stored in a new NullableDatum struct, which, due to padding, needs more memory per argument than before. But as usually far fewer arguments are stored, and individual arguments are cheaper to access, that's still a clear win. It's likely that there's other places where conversion to NullableDatum arrays would make sense, e.g. TupleTableSlots, but that's for another commit. Because the function call information is now variable-length allocations have to take the number of arguments into account. For heap allocations that can be done with SizeForFunctionCallInfoData(), for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro that helps to allocate an appropriately sized and aligned variable. Some places with stack allocation function call information don't know the number of arguments at compile time, and currently variably sized stack allocations aren't allowed in postgres. Therefore allow for FUNC_MAX_ARGS space in these cases. They're not that common, so for now that seems acceptable. Because of the need to allocate FunctionCallInfo of the appropriate size, older extensions may need to update their code. To avoid subtle breakages, the FunctionCallInfoData struct has been renamed to FunctionCallInfoBaseData. Most code only references FunctionCallInfo, so that shouldn't cause much collateral damage. This change is also a prerequisite for more efficient expression JIT compilation (by allocating the function call information on the stack, allowing LLVM to optimize it away); previously the size of the call information caused problems inside LLVM's optimizer. Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de |
7 years ago |
|
|
fd1afdbafd |
postgres_fdw: Account for tlist eval costs in estimate_path_cost_size().
Previously, estimate_path_cost_size() didn't account for tlist eval
costs, except when costing a foreign-grouping path using local
statistics, but such costs should be accounted for when costing that path
using remote estimates, because some of the tlist expressions might be
evaluated locally. Also, such costs should be accounted for in the case
of a foreign-scan or foreign-join path, because the tlist might contain
PlaceHolderVars, which postgres_fdw currently evaluates locally.
This also fixes an oversight in my commit
|
7 years ago |
|
|
95931133a9 |
Fix misc typos in comments.
Spotted mostly by Fabien Coelho. Discussion: https://www.postgresql.org/message-id/alpine.DEB.2.21.1901230947050.16643@lancre |
7 years ago |
|
|
c91560defc |
Move remaining code from tqual.[ch] to heapam.h / heapam_visibility.c.
Given these routines are heap specific, and that there will be more generic visibility support in via table AM, it makes sense to move the prototypes to heapam.h (routines like HeapTupleSatisfiesVacuum will not be exposed in a generic fashion, because they are too storage specific). Similarly, the code in tqual.c is specific to heap, so moving it into access/heap/ makes sense. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
b7eda3e0e3 |
Move generic snapshot related code from tqual.h to snapmgr.h.
The code in tqual.c is largely heap specific. Due to the upcoming pluggable storage work, it therefore makes sense to move it into access/heap/ (as the file's header notes, the tqual name isn't very good). But the various statically allocated snapshot and snapshot initialization functions are now (see previous commit) generic and do not depend on functions declared in tqual.h anymore. Therefore move. Also move XidInMVCCSnapshot as that's useful for future AMs, and already used outside of tqual.c. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de |
7 years ago |
|
|
63746189b2 |
Change snapshot type to be determined by enum rather than callback.
This is in preparation for allowing the same snapshot be used for
different table AMs. With the current callback based approach we would
need one callback for each supported AM, which clearly would not be
extensible. Thus add a new Snapshot->snapshot_type field, and move
the dispatch into HeapTupleSatisfiesVisibility() (which is now a
function). Later work will then dispatch calls to
HeapTupleSatisfiesVisibility() and other AMs visibility functions
depending on the type of the table. The central SnapshotType enum
also seems like a good location to centralize documentation about the
intended behaviour of various types of snapshots.
As tqual.h isn't included by bufmgr.h any more (as HeapTupleSatisfies*
isn't referenced by TestForOldSnapshot() anymore) a few files now need
to include it directly.
Author: Andres Freund, loosely based on earlier work by Haribabu Kommi
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
7 years ago |