|
|
|
/*-------------------------------------------------------------------------
|
|
|
|
*
|
|
|
|
* prep.h
|
|
|
|
* prototypes for files in optimizer/prep/
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
|
|
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
|
|
*
|
|
|
|
* src/include/optimizer/prep.h
|
|
|
|
*
|
|
|
|
*-------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
#ifndef PREP_H
|
|
|
|
#define PREP_H
|
|
|
|
|
|
|
|
#include "nodes/pathnodes.h"
|
|
|
|
#include "nodes/plannodes.h"
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* prototypes for prepjointree.c
|
|
|
|
*/
|
|
|
|
extern void transform_MERGE_to_join(Query *parse);
|
|
|
|
extern Query *expand_virtual_generated_columns(PlannerInfo *root);
|
In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
7 years ago
|
|
|
extern void replace_empty_jointree(Query *parse);
|
|
|
|
extern void pull_up_sublinks(PlannerInfo *root);
|
Allow functions-in-FROM to be pulled up if they reduce to constants.
This allows simplification of the plan tree in some common usage
patterns: we can get rid of a join to the function RTE.
In principle we could pull up any immutable expression, but restricting
it to Consts avoids the risk that multiple evaluations of the expression
might cost more than we can save. (Possibly this could be improved in
future --- but we've more or less promised people that putting a function
in FROM guarantees single evaluation, so we'd have to tread carefully.)
To do this, we need to rearrange when eval_const_expressions()
happens for expressions in function RTEs. I moved it to
inline_set_returning_functions(), which already has to iterate over
every function RTE, and in consequence renamed that function to
preprocess_function_rtes(). A useful consequence is that
inline_set_returning_function() no longer has to do this for itself,
simplifying that code.
In passing, break out pull_up_simple_subquery's code that knows where
everything that needs pullup_replace_vars() processing is, so that
the new pull_up_constant_function() routine can share it. We'd
gotten away with one-and-a-half copies of that code so far, since
pull_up_simple_values() could assume that a lot of cases didn't apply
to it --- but I don't think pull_up_constant_function() can make any
simplifying assumptions. Might as well make pull_up_simple_values()
use it too.
(Possibly this refactoring should go further: maybe we could share
some of the code to fill in the pullup_replace_vars_context struct?
For now, I left it that the callers fill that completely.)
Note: the one existing test case that this patch changes has to be
changed because inlining its function RTEs would destroy the point
of the test, namely to check join order.
Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by
Antonin Houska and Anastasia Lubennikova, and whacked around
some more by me
Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
6 years ago
|
|
|
extern void preprocess_function_rtes(PlannerInfo *root);
|
|
|
|
extern void pull_up_subqueries(PlannerInfo *root);
|
|
|
|
extern void flatten_simple_union_all(PlannerInfo *root);
|
|
|
|
extern void reduce_outer_joins(PlannerInfo *root);
|
In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
7 years ago
|
|
|
extern void remove_useless_result_rtes(PlannerInfo *root);
|
Make Vars be outer-join-aware.
Traditionally we used the same Var struct to represent the value
of a table column everywhere in parse and plan trees. This choice
predates our support for SQL outer joins, and it's really a pretty
bad idea with outer joins, because the Var's value can depend on
where it is in the tree: it might go to NULL above an outer join.
So expression nodes that are equal() per equalfuncs.c might not
represent the same value, which is a huge correctness hazard for
the planner.
To improve this, decorate Var nodes with a bitmapset showing
which outer joins (identified by RTE indexes) may have nulled
them at the point in the parse tree where the Var appears.
This allows us to trust that equal() Vars represent the same value.
A certain amount of klugery is still needed to cope with cases
where we re-order two outer joins, but it's possible to make it
work without sacrificing that core principle. PlaceHolderVars
receive similar decoration for the same reason.
In the planner, we include these outer join bitmapsets into the relids
that an expression is considered to depend on, and in consequence also
add outer-join relids to the relids of join RelOptInfos. This allows
us to correctly perceive whether an expression can be calculated above
or below a particular outer join.
This change affects FDWs that want to plan foreign joins. They *must*
follow suit when labeling foreign joins in order to match with the
core planner, but for many purposes (if postgres_fdw is any guide)
they'd prefer to consider only base relations within the join.
To support both requirements, redefine ForeignScan.fs_relids as
base+OJ relids, and add a new field fs_base_relids that's set up by
the core planner.
Large though it is, this commit just does the minimum necessary to
install the new mechanisms and get check-world passing again.
Follow-up patches will perform some cleanup. (The README additions
and comments mention some stuff that will appear in the follow-up.)
Patch by me; thanks to Richard Guo for review.
Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
3 years ago
|
|
|
extern Relids get_relids_in_jointree(Node *jtnode, bool include_outer_joins,
|
|
|
|
bool include_inner_joins);
|
|
|
|
extern Relids get_relids_for_join(Query *query, int joinrelid);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* prototypes for preptlist.c
|
|
|
|
*/
|
Rework planning and execution of UPDATE and DELETE.
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
5 years ago
|
|
|
extern void preprocess_targetlist(PlannerInfo *root);
|
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
11 years ago
|
|
|
|
Fix mishandling of resjunk columns in ON CONFLICT ... UPDATE tlists.
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE
list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present.
If it happens, the ON CONFLICT UPDATE code path would end up storing
tuples that include the values of the extra resjunk columns. That's
fairly harmless in the short run, but if new columns are added to
the table then the values would become accessible, possibly leading
to malfunctions if they don't match the datatypes of the new columns.
This had escaped notice through a confluence of missing sanity checks,
including
* There's no cross-check that a tuple presented to heap_insert or
heap_update matches the table rowtype. While it's difficult to
check that fully at reasonable cost, we can easily add assertions
that there aren't too many columns.
* The output-column-assignment cases in execExprInterp.c lacked
any sanity checks on the output column numbers, which seems like
an oversight considering there are plenty of assertion checks on
input column numbers. Add assertions there too.
* We failed to apply nodeModifyTable's ExecCheckPlanOutput() to
the ON CONFLICT UPDATE tlist. That wouldn't have caught this
specific error, since that function is chartered to ignore resjunk
columns; but it sure seems like a bad omission now that we've seen
this bug.
In HEAD, the right way to fix this is to make the processing of
ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists
now do, that is don't add "SET x = x" entries, and use
ExecBuildUpdateProjection to evaluate the tlist and combine it with
old values of the not-set columns. This adds a little complication
to ExecBuildUpdateProjection, but allows removal of a comparable
amount of now-dead code from the planner.
In the back branches, the most expedient solution seems to be to
(a) use an output slot for the ON CONFLICT UPDATE projection that
actually matches the target table, and then (b) invent a variant of
ExecBuildProjectionInfo that can be told to not store values resulting
from resjunk columns, so it doesn't try to store into nonexistent
columns of the output slot. (We can't simply ignore the resjunk columns
altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.)
This works back to v10. In 9.6, projections work much differently and
we can't cheaply give them such an option. The 9.6 version of this
patch works by inserting a JunkFilter when it's necessary to get rid
of resjunk columns.
In addition, v11 and up have the reverse problem when trying to
perform ON CONFLICT UPDATE on a partitioned table. Through a
further oversight, adjust_partition_tlist() discarded resjunk columns
when re-ordering the ON CONFLICT UPDATE tlist to match a partition.
This accidentally prevented the storing-bogus-tuples problem, but
at the cost that MULTIEXPR_SUBLINK cases didn't work, typically
crashing if more than one row has to be updated. Fix by preserving
resjunk columns in that routine. (I failed to resist the temptation
to add more assertions there too, and to do some minor code
beautification.)
Per report from Andres Freund. Back-patch to all supported branches.
Security: CVE-2021-32028
4 years ago
|
|
|
extern List *extract_update_targetlist_colnos(List *tlist);
|
|
|
|
|
Re-implement EvalPlanQual processing to improve its performance and eliminate
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
16 years ago
|
|
|
extern PlanRowMark *get_plan_rowmark(List *rowmarks, Index rtindex);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* prototypes for prepagg.c
|
|
|
|
*/
|
|
|
|
extern void get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit,
|
|
|
|
AggClauseCosts *costs);
|
|
|
|
extern void preprocess_aggrefs(PlannerInfo *root, Node *clause);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* prototypes for prepunion.c
|
|
|
|
*/
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern RelOptInfo *plan_set_operations(PlannerInfo *root);
|
|
|
|
|
Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
8 years ago
|
|
|
#endif /* PREP_H */
|